BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30227668)

  • 1. Macro-Encapsulation of Inorganic Phase-Change Materials (PCM) in Metal Capsules.
    Höhlein S; König-Haagen A; Brüggemann D
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30227668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase Change Materials Meet Microfluidic Encapsulation.
    Guo Y; Hou T; Wang J; Yan Y; Li W; Ren Y; Yan S
    Adv Sci (Weinh); 2023 Nov; ():e2304580. PubMed ID: 37963852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Molecular PCM Wall with Inorganic Composite: Dynamic Thermal Analysis and Optimization in Charge-Discharge Cycles.
    Yang Q; Xiong J; Mao G; Zhang Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro- and nano-encapsulated metal and alloy-based phase-change materials for thermal energy storage.
    Zhu S; Nguyen MT; Yonezawa T
    Nanoscale Adv; 2021 Aug; 3(16):4626-4645. PubMed ID: 36134315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Energy Storage Using a Hybrid Composite Based on Technical-Grade Paraffin-AP25 Wax as a Phase Change Material.
    Nabwey HA; Tony MA
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Ball-Milled Steatite Powder on the Latent Heat Energy Storage Properties and Heat Charging-Discharging Periods of Paraffin Wax as Phase Change Material.
    Kannaiyan S; Huang SJ; Rathnaraj D; Srinivasan SA
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Latent Heat Storage Systems Based on Liquid Metal Matrices with Suspended Phase Change Material Microparticles.
    Kang S; Kim W; Song C; Hong Y; Kim S; Goh M; Chung SK; Lee J
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36781-36791. PubMed ID: 37475159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified Supporting Materials to Fabricate Form Stable Phase Change Material with High Thermal Energy Storage.
    Yu C; Song Y
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Analysis of Phase Change Materials (PCMs)/Expanded Graphite (EG) Composites and Their Thermal Behavior under Hot and Humid Conditions.
    Yang K; Zhang X; Venkataraman M; Wiener J; Palanisamy S; Sozcu S; Tan X; Kremenakova D; Zhu G; Yao J; Militky J
    Chempluschem; 2023 Apr; 88(4):e202300081. PubMed ID: 36951444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the Phase-Change Thermal-Storage Characteristics of a Solar Collector.
    Deng Y; Xu J; Li Y; Zhang Y; Kuang C
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Energy Storage Using Phase Change Materials in High-Temperature Industrial Applications: Multi-Criteria Selection of the Adequate Material.
    Cabeza LF; Martínez FR; Borri E; Ushak S; Prieto C
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Conductivity Measurement of Flexible Composite Phase-Change Materials Based on the Steady-State Method.
    Feng Z; Xiao X
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New library of phase-change materials with their selection by the Rényi entropy method.
    Kulish V; Aslfattahi N; Schmirler M; Sláma P
    Sci Rep; 2023 Jun; 13(1):10446. PubMed ID: 37369786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive review of critical analysis of biodegradable waste PCM for thermal energy storage systems using machine learning and deep learning to predict dynamic behavior.
    Sharma A; Singh PK; Makki E; Giri J; Sathish T
    Heliyon; 2024 Feb; 10(3):e25800. PubMed ID: 38356509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Numerical Investigation of a Melting Rate Enhancement inside a Thermal Energy Storage System of Finned Heat Pipe with Nano-Enhanced Phase Change Material.
    Jirawattanapanit A; Abderrahmane A; Mourad A; Guedri K; Younis O; Bouallegue B; Subkrajang K; Rajchakit G; Shah NA
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of phase change materials for thermal energy storage: a review.
    Tafrishi H; Sadeghzadeh S; Ahmadi R
    RSC Adv; 2022 May; 12(23):14776-14807. PubMed ID: 35702228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles to Enhance Melting Performance of Phase Change Materials for Thermal Energy Storage.
    Han Y; Yang Y; Mallick T; Wen C
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the core-shell interactions in macrocapsules of organic phase change materials and polysaccharide shell.
    Reddy VJ; Dixit P; Singh J; Chattopadhyay S
    Carbohydr Polym; 2022 Oct; 294():119786. PubMed ID: 35868796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat storage material: a hope in solar thermal.
    Sehrawat R; Sahdev RK; Tiwari S
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11175-11198. PubMed ID: 36509955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in phase change materials and nanomaterials for applications in thermal energy storage.
    Kumar R; Thakur AK; Gupta LR; Gehlot A; Sikarwar VS
    Environ Sci Pollut Res Int; 2024 Jan; 31(5):6649-6677. PubMed ID: 38158531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.