BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30227709)

  • 1. Transformation of AgCl Particles under Conditions Typical of Natural Waters: Implications for Oxidant Generation.
    Rong H; Garg S; Waite TD
    Environ Sci Technol; 2018 Oct; 52(20):11621-11631. PubMed ID: 30227709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo- and thermo-chemical transformation of AgCl and Ag
    Yin Y; Xu W; Tan Z; Li Y; Wang W; Guo X; Yu S; Liu J; Jiang G
    Environ Pollut; 2017 Jan; 220(Pt B):955-962. PubMed ID: 27836474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism and experimental study on the photocatalytic performance of Ag/AgCl @ chiral TiO2 nanofibers photocatalyst: the impact of wastewater components.
    Wang D; Li Y; Li Puma G; Wang C; Wang P; Zhang W; Wang Q
    J Hazard Mater; 2015 Mar; 285():277-84. PubMed ID: 25524623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel insights into the multistep chlorination of silver nanoparticles in aquatic environments.
    Yang Y; Zhang N; You Q; Chen X; Zhang Y; Zhu L
    Water Res; 2023 Jul; 240():120111. PubMed ID: 37263118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of light and Suwanee River Fulvic Acid on O
    Rong H; Garg S; Waite TD
    Environ Sci Technol; 2019 Jun; 53(12):6688-6698. PubMed ID: 31090416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental fate and behavior of silver nanoparticles in natural estuarine systems.
    Li P; Su M; Wang X; Zou X; Sun X; Shi J; Zhang H
    J Environ Sci (China); 2020 Feb; 88():248-259. PubMed ID: 31862066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of AgCl nanoparticles in a sewer system--A field study.
    Kaegi R; Voegelin A; Sinnet B; Zuleeg S; Siegrist H; Burkhardt M
    Sci Total Environ; 2015 Dec; 535():20-7. PubMed ID: 25582606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver nanoparticle and Ag
    Zou X; Li P; Wang X; Zheng S; Dai F; Zhang H
    Environ Pollut; 2020 Mar; 258():113686. PubMed ID: 31812524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X; Li P; Lou J; Fu X; Zhang H
    Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speciation and lability of Ag-, AgCl-, and Ag2S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films.
    Sekine R; Brunetti G; Donner E; Khaksar M; Vasilev K; Jämting ÅK; Scheckel KG; Kappen P; Zhang H; Lombi E
    Environ Sci Technol; 2015 Jan; 49(2):897-905. PubMed ID: 25436975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halide removal from waters by silver nanoparticles and hydrogen peroxide.
    Polo AMS; Lopez-Peñalver JJ; Rivera-Utrilla J; Von Gunten U; Sánchez-Polo M
    Sci Total Environ; 2017 Dec; 607-608():649-657. PubMed ID: 28709099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+).
    Yu SJ; Yin YG; Chao JB; Shen MH; Liu JF
    Environ Sci Technol; 2014; 48(1):403-11. PubMed ID: 24328224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-technique approach to study the stability of silver nanoparticles at predicted environmental concentrations in wastewater.
    Cervantes-Avilés P; Huang Y; Keller AA
    Water Res; 2019 Dec; 166():115072. PubMed ID: 31525511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What happens to silver-based nanoparticles if they meet seawater?
    Wimmer A; Urstoeger A; Funck NC; Adler FP; Lenz L; Doeblinger M; Schuster M
    Water Res; 2020 Mar; 171():115399. PubMed ID: 31896028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Ozone Treatment on Nano-Sized Silver Sulfide in Wastewater Effluent.
    Thalmann B; Voegelin A; von Gunten U; Behra R; Morgenroth E; Kaegi R
    Environ Sci Technol; 2015 Sep; 49(18):10911-9. PubMed ID: 26270654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance.
    Zook JM; Long SE; Cleveland D; Geronimo CL; MacCuspie RI
    Anal Bioanal Chem; 2011 Oct; 401(6):1993-2002. PubMed ID: 21808990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver nanoparticles coated with natural polysaccharides as models to study AgNP aggregation kinetics using UV-Visible spectrophotometry upon discharge in complex environments.
    Lodeiro P; Achterberg EP; Pampín J; Affatati A; El-Shahawi MS
    Sci Total Environ; 2016 Jan; 539():7-16. PubMed ID: 26363390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems.
    Angel BM; Batley GE; Jarolimek CV; Rogers NJ
    Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver nanoparticle dissolution in the presence of ligands and of hydrogen peroxide.
    Sigg L; Lindauer U
    Environ Pollut; 2015 Nov; 206():582-7. PubMed ID: 26310977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.