These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3022791)

  • 21. Reconstitution of rhodopsin and the cGMP cascade in polymerized bilayer membranes.
    Tyminski PN; Latimer LH; O'Brien DF
    Biochemistry; 1988 Apr; 27(8):2696-705. PubMed ID: 2840946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sites of arrestin action during the quench phenomenon in retinal rods.
    Zuckerman R; Cheasty JE
    FEBS Lett; 1988 Oct; 238(2):379-84. PubMed ID: 2844605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of phosphodiesterase in frog rod outer segment by an intermediate of rhodopsin photolysis. II.
    Fukada Y; Yoshizawa T
    Biochim Biophys Acta; 1981 Jul; 675(2):195-200. PubMed ID: 6268184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation mechanism of retinal rod cyclic GMP phosphodiesterase probed by fluorescein-labeled inhibitory subunit.
    Wensel TG; Stryer L
    Biochemistry; 1990 Feb; 29(8):2155-61. PubMed ID: 2158346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-induced conformational change in rhodopsin detected by modification of G-protein binding, GTP gamma S binding and cGMP phosphodiesterase activation.
    Pellicone C; Cook NJ; Nullans G; Virmaux N
    FEBS Lett; 1985 Feb; 181(1):184-8. PubMed ID: 2982652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the light-induced increase in the Michaelis constant of the cGMP phosphodiesterase in frog rod outer segments.
    Kawamura S; Murakami M
    Biochim Biophys Acta; 1986 Mar; 870(2):256-66. PubMed ID: 3006780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane stimulation of cGMP phosphodiesterase activation by transducin: comparison of phospholipid bilayers to rod outer segment membranes.
    Malinski JA; Wensel TG
    Biochemistry; 1992 Oct; 31(39):9502-12. PubMed ID: 1327116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light-induced translocation of cyclic-GMP phosphodiesterase on rod disc membranes in rat retina.
    Chen J; Yoshida T; Bitensky MW
    Mol Vis; 2008; 14():2509-17. PubMed ID: 19112528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of retinal rod cyclic GMP-phosphodiesterase by transducin: characterization of the complex formed by phosphodiesterase inhibitor and transducin alpha-subunit.
    Deterre P; Bigay J; Robert M; Pfister C; Kühn H; Chabre M
    Proteins; 1986 Oct; 1(2):188-93. PubMed ID: 2835763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A light-activated GTPase in vertebrate photoreceptors: regulation of light-activated cyclic GMP phosphodiesterase.
    Wheeler GL; Bitensky MW
    Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4238-42. PubMed ID: 200909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reciprocal control of retinal rod cyclic GMP phosphodiesterase by its gamma subunit and transducin.
    Wensel TG; Stryer L
    Proteins; 1986 Sep; 1(1):90-9. PubMed ID: 2835761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amplification of phosphodiesterase activation is greatly reduced by rhodopsin phosphorylation.
    Miller JL; Fox DA; Litman BJ
    Biochemistry; 1986 Sep; 25(18):4983-8. PubMed ID: 3021208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The functional similarity of vertebrate rhodopsin and of a photosensitive pigment from the unicellular flagellate alga Chlamydomonas reinhardtii].
    Korol'kov SN; Garnovskaia MN; Basov AS; Dumler IL
    Zh Evol Biokhim Fiziol; 1989; 25(6):777-80. PubMed ID: 2560308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition and stimulation of photoreceptor phosphodiesterases by dipyridamole and M&B 22,948.
    Gillespie PG; Beavo JA
    Mol Pharmacol; 1989 Nov; 36(5):773-81. PubMed ID: 2555675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sites of interaction between rod G-protein alpha-subunit and cGMP-phosphodiesterase gamma-subunit. Implications for the phosphodiesterase activation mechanism.
    Artemyev NO; Rarick HM; Mills JS; Skiba NP; Hamm HE
    J Biol Chem; 1992 Dec; 267(35):25067-72. PubMed ID: 1334079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A monoclonal antibody to guanine nucleotide binding protein inhibits the light-activated cyclic GMP pathway in frog rod outer segments.
    Hamm HE; Bownds MD
    J Gen Physiol; 1984 Aug; 84(2):265-80. PubMed ID: 6092516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deactivation of photoactivated rhodopsin by rhodopsin-kinase and arrestin.
    Kühn H; Wilden U
    J Recept Res; 1987; 7(1-4):283-98. PubMed ID: 3040978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of fluoride on retinal rod outer segment cGMP phosphodiesterase and G-protein.
    Cook NJ; Nullans G; Virmaux N
    Biochem Biophys Res Commun; 1985 Aug; 131(1):146-51. PubMed ID: 2994645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and recombination of bovine rod outer segment cGMP phosphodiesterase and its regulators.
    Hurley JB
    Biochem Biophys Res Commun; 1980 Jan; 92(2):505-10. PubMed ID: 6101951
    [No Abstract]   [Full Text] [Related]  

  • 40. Inactivation of photoexcited rhodopsin in retinal rods: the roles of rhodopsin kinase and 48-kDa protein (arrestin).
    Bennett N; Sitaramayya A
    Biochemistry; 1988 Mar; 27(5):1710-5. PubMed ID: 3365420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.