These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 30227927)
1. Discriminant analysis of volatile organic compounds of Fusarium oxysporum f. sp. cepae and Fusarium proliferatum isolates from onions as indicators of fungal growth. Wang A; Haapalainen M; Latvala S; Edelenbos M; Johansen A Fungal Biol; 2018 Oct; 122(10):1013-1022. PubMed ID: 30227927 [TBL] [Abstract][Full Text] [Related]
2. Genetic and Pathogenic Variability of Fusarium oxysporum f. sp. cepae Isolated from Onion and Welsh Onion in Japan. Sasaki K; Nakahara K; Tanaka S; Shigyo M; Ito S Phytopathology; 2015 Apr; 105(4):525-32. PubMed ID: 25412011 [TBL] [Abstract][Full Text] [Related]
3. Molecular identification of two vegetative compatibility groups of Fusarium oxysporum f. sp. cepae. Southwood MJ; Viljoen A; Mostert G; McLeod A Phytopathology; 2012 Feb; 102(2):204-13. PubMed ID: 21970568 [TBL] [Abstract][Full Text] [Related]
4. Sampling and PCR method for detecting pathogenic Fusarium oxysporum strains in onion harvest. Latvala S; Haapalainen M; Kivijärvi P; Suojala-Ahlfors T; Iivonen S; Hannukkala A Lett Appl Microbiol; 2020 Mar; 70(3):210-220. PubMed ID: 31838746 [TBL] [Abstract][Full Text] [Related]
5. Brevibacillus fortis NRS-1210 produces edeines that inhibit the in vitro growth of conidia and chlamydospores of the onion pathogen Fusarium oxysporum f. sp. cepae. Johnson ET; Bowman MJ; Dunlap CA Antonie Van Leeuwenhoek; 2020 Jul; 113(7):973-987. PubMed ID: 32279200 [TBL] [Abstract][Full Text] [Related]
6. Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae. Taylor A; Vágány V; Jackson AC; Harrison RJ; Rainoni A; Clarkson JP Mol Plant Pathol; 2016 Sep; 17(7):1032-47. PubMed ID: 26609905 [TBL] [Abstract][Full Text] [Related]
7. Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. Chaves-López C; Serio A; Gianotti A; Sacchetti G; Ndagijimana M; Ciccarone C; Stellarini A; Corsetti A; Paparella A J Appl Microbiol; 2015 Aug; 119(2):487-99. PubMed ID: 25989039 [TBL] [Abstract][Full Text] [Related]
8. Early Detection of Fusarium Basal Rot Infection in Onions and Shallots Based on VOC Profiles Analysis. Wesoly M; Daulton E; Jenkins S; van Amsterdam S; Clarkson J; Covington JA J Agric Food Chem; 2024 Feb; 72(7):3664-3672. PubMed ID: 38320984 [TBL] [Abstract][Full Text] [Related]
9. Fusarium proliferatum Pathogenic on Onion Bulbs in Washington. Toit LJD; Inglis DA; Pelter GQ Plant Dis; 2003 Jun; 87(6):750. PubMed ID: 30812873 [TBL] [Abstract][Full Text] [Related]
10. Preliminary Studies on Detection of Fusarium Basal Rot Infection in Onions and Shallots Using Electronic Nose. Labanska M; van Amsterdam S; Jenkins S; Clarkson JP; Covington JA Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891126 [TBL] [Abstract][Full Text] [Related]
11. Monitoring the volatile language of fungi using gas chromatography-ion mobility spectrometry. Speckbacher V; Zeilinger S; Zimmermann S; Mayhew CA; Wiesenhofer H; Ruzsanyi V Anal Bioanal Chem; 2021 May; 413(11):3055-3067. PubMed ID: 33675374 [TBL] [Abstract][Full Text] [Related]
12. Effect of Headspace and Trapped Volatile Organic Compounds (VOCs) of the Chinese Caterpillar Mushroom, Ophiocordyceps sinensis (Ascomycetes), against Soil-Borne Plant Pathogens. Sangeetha C; Krishnamoorthy AS; Kumar NK; Pravin IA Int J Med Mushrooms; 2018; 20(9):825-835. PubMed ID: 30317977 [TBL] [Abstract][Full Text] [Related]
13. The influence of environmental factors on growth and interactions between Embellisia allii and Fusarium oxysporum f. sp. cepae isolated from garlic. Lee HB; Magan N Int J Food Microbiol; 2010 Apr; 138(3):238-42. PubMed ID: 20153538 [TBL] [Abstract][Full Text] [Related]
14. Antifungal, anti-oomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus Xylaria sp. strain PB3f3 isolated from Haematoxylon brasiletto. Sánchez-Ortiz BL; Sánchez-Fernández RE; Duarte G; Lappe-Oliveras P; Macías-Rubalcava ML J Appl Microbiol; 2016 May; 120(5):1313-25. PubMed ID: 26920072 [TBL] [Abstract][Full Text] [Related]
15. Vegetative Compatibility Groups of Fusarium oxysporum f. sp. cepae from Onion in Colorado. Swift CE; Wickliffe ER; Schwartz HF Plant Dis; 2002 Jun; 86(6):606-610. PubMed ID: 30823232 [TBL] [Abstract][Full Text] [Related]
16. Characterisation of pathogen-specific regions and novel effector candidates in Fusarium oxysporum f. sp. cepae. Armitage AD; Taylor A; Sobczyk MK; Baxter L; Greenfield BPJ; Bates HJ; Wilson F; Jackson AC; Ott S; Harrison RJ; Clarkson JP Sci Rep; 2018 Sep; 8(1):13530. PubMed ID: 30202022 [TBL] [Abstract][Full Text] [Related]
17. Quantitative volatile compound profiles in fungal cultures of three different Fusarium graminearum chemotypes. Buśko M; Kulik T; Ostrowska A; Góral T; Perkowski J FEMS Microbiol Lett; 2014 Oct; 359(1):85-93. PubMed ID: 25132145 [TBL] [Abstract][Full Text] [Related]
18. Study of the Vapor Phase Over Fusarium Fungi Cultured on Various Substrates. Savelieva EI; Gustyleva LK; Kessenikh ED; Khlebnikova NS; Leffingwell J; Gavrilova OP; Gagkaeva TY Chem Biodivers; 2016 Jul; 13(7):891-903. PubMed ID: 27253722 [TBL] [Abstract][Full Text] [Related]
19. Antagonistic activity and characterization of indigenous soil isolates of bacteria and fungi against onion wilt incited by Fusarium sp. Karim H; Azis AA; Jumadi O Arch Microbiol; 2021 Dec; 204(1):68. PubMed ID: 34950974 [TBL] [Abstract][Full Text] [Related]
20. Effectiveness of high-throughput miniaturized sorbent- and solid phase microextraction techniques combined with gas chromatography-mass spectrometry analysis for a rapid screening of volatile and semi-volatile composition of wines--a comparative study. Mendes B; Gonçalves J; Câmara JS Talanta; 2012 Jan; 88():79-94. PubMed ID: 22265473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]