BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 30228194)

  • 1. A Quantitative Chemical Proteomic Strategy for Profiling Phosphoprotein Phosphatases from Yeast to Humans.
    Lyons SP; Jenkins NP; Nasa I; Choy MS; Adamo ME; Page R; Peti W; Moorhead GB; Kettenbach AN
    Mol Cell Proteomics; 2018 Dec; 17(12):2448-2461. PubMed ID: 30228194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of PP2A, PP4, and PP6 holoenzyme assembly by carboxyl-terminal methylation.
    Lyons SP; Greiner EC; Cressey LE; Adamo ME; Kettenbach AN
    Sci Rep; 2021 Nov; 11(1):23031. PubMed ID: 34845248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel purification of three catalytic subunits of the protein serine/threonine phosphatase 2A family (PP2A(C), PP4(C), and PP6(C)) and analysis of the interaction of PP2A(C) with alpha4 protein.
    Kloeker S; Reed R; McConnell JL; Chang D; Tran K; Westphal RS; Law BK; Colbran RJ; Kamoun M; Campbell KS; Wadzinski BE
    Protein Expr Purif; 2003 Sep; 31(1):19-33. PubMed ID: 12963337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Mass Spectrometry-Based Approach to Identify Phosphoprotein Phosphatases and their Interactors.
    Smolen KA; Kettenbach AN
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35575520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity-based profiling of endogenous phosphoprotein phosphatases by mass spectrometry.
    Brauer BL; Wiredu K; Mitchell S; Moorhead GB; Gerber SA; Kettenbach AN
    Nat Protoc; 2021 Oct; 16(10):4919-4943. PubMed ID: 34518704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative kinase and phosphatase profiling reveal that CDK1 phosphorylates PP2Ac to promote mitotic entry.
    Nasa I; Cressey LE; Kruse T; Hertz EPT; Gui J; Graves LM; Nilsson J; Kettenbach AN
    Sci Signal; 2020 Sep; 13(648):. PubMed ID: 32900880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducible Protein Degradation as a Strategy to Identify Phosphoprotein Phosphatase 6 Substrates in RAS-Mutant Colorectal Cancer Cells.
    Mariano NC; Rusin SF; Nasa I; Kettenbach AN
    Mol Cell Proteomics; 2023 Aug; 22(8):100614. PubMed ID: 37392812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serine/threonine phosphatases and aquaporin-2 regulation in renal collecting duct.
    LeMaire SM; Raghuram V; Grady CR; Pickering CM; Chou CL; Umejiego EN; Knepper MA
    Am J Physiol Renal Physiol; 2017 Jan; 312(1):F84-F95. PubMed ID: 27784696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of carboxyl-terminal methylation on holoenzyme function of the PP2A subfamily.
    Nasa I; Kettenbach AN
    Biochem Soc Trans; 2020 Oct; 48(5):2015-2027. PubMed ID: 33125487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines.
    Uhrig RG; Labandera AM; Moorhead GB
    Trends Plant Sci; 2013 Sep; 18(9):505-13. PubMed ID: 23790269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leucine Carboxyl Methyltransferase 1 (LCMT-1) Methylates Protein Phosphatase 4 (PP4) and Protein Phosphatase 6 (PP6) and Differentially Regulates the Stable Formation of Different PP4 Holoenzymes.
    Hwang J; Lee JA; Pallas DC
    J Biol Chem; 2016 Sep; 291(40):21008-21019. PubMed ID: 27507813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate and phosphorylation site selection by phosphoprotein phosphatases.
    Nguyen H; Kettenbach AN
    Trends Biochem Sci; 2023 Aug; 48(8):713-725. PubMed ID: 37173206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Okadaic acid and microcystin insensitive PPP-family phosphatases may represent novel biotechnology targets.
    Uhrig RG; Moorhead GB
    Plant Signal Behav; 2011 Dec; 6(12):2057-9. PubMed ID: 22112445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation.
    Liu F; Grundke-Iqbal I; Iqbal K; Gong CX
    Eur J Neurosci; 2005 Oct; 22(8):1942-50. PubMed ID: 16262633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of natural toxins with inhibitory activity against serine/threonine protein phosphatases.
    Honkanen RE; Codispoti BA; Tse K; Boynton AL; Honkanan RE
    Toxicon; 1994 Mar; 32(3):339-50. PubMed ID: 8016855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues.
    Lillo C; Kataya AR; Heidari B; Creighton MT; Nemie-Feyissa D; Ginbot Z; Jonassen EM
    Plant Cell Environ; 2014 Dec; 37(12):2631-48. PubMed ID: 24810976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The alpha4 regulatory subunit exerts opposing allosteric effects on protein phosphatases PP6 and PP2A.
    Prickett TD; Brautigan DL
    J Biol Chem; 2006 Oct; 281(41):30503-11. PubMed ID: 16895907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overlapping binding sites in protein phosphatase 2A for association with regulatory A and alpha-4 (mTap42) subunits.
    Prickett TD; Brautigan DL
    J Biol Chem; 2004 Sep; 279(37):38912-20. PubMed ID: 15252037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of phosphoprotein phosphatases in the corpus luteum: I identification and characterisation of serine/threonine phosphoprotein phosphatases in isolated rat luteal cells.
    Ford SL; Abayasekara DR; Persaud SJ; Jones PM
    J Endocrinol; 1996 Aug; 150(2):205-11. PubMed ID: 8869587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulators of serine/threonine protein phosphatases at the dawn of a clinical era?
    Honkanen RE; Golden T
    Curr Med Chem; 2002 Nov; 9(22):2055-75. PubMed ID: 12369870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.