These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30229243)

  • 1. Atomistic dewetting mechanics of Wenzel and monostable Cassie-Baxter states.
    Xiao S; Zhang Z; He J
    Phys Chem Chem Phys; 2018 Oct; 20(38):24759-24767. PubMed ID: 30229243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Nanodroplet Sizes on Wettability, Electrowetting Transition, and Spontaneous Dewetting Transition on Nanopillar-Arrayed Surfaces.
    He X; Wang YF; Zhang BX; Wang SL; Yang YR; Wang XD; Lee DJ
    Langmuir; 2021 Dec; 37(50):14571-14581. PubMed ID: 34894696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous dewetting transitions of droplets during icing & melting cycle.
    Wang L; Tian Z; Jiang G; Luo X; Chen C; Hu X; Zhang H; Zhong M
    Nat Commun; 2022 Jan; 13(1):378. PubMed ID: 35046407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous recovery of superhydrophobicity on nanotextured surfaces.
    Prakash S; Xi E; Patel AJ
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5508-13. PubMed ID: 27140619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cassie-Baxter and Wenzel states on a nanostructured surface: phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations.
    Giacomello A; Meloni S; Chinappi M; Casciola CM
    Langmuir; 2012 Jul; 28(29):10764-72. PubMed ID: 22708630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-regulated adhesion of impacting drops on nano/microtextured monostable superrepellent surfaces.
    Shi S; Lv C; Zheng Q
    Soft Matter; 2020 Jun; 16(23):5388-5397. PubMed ID: 32490478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface.
    Koishi T; Yasuoka K; Fujikawa S; Ebisuzaki T; Zeng XC
    Proc Natl Acad Sci U S A; 2009 May; 106(21):8435-40. PubMed ID: 19429707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophobic Breakdown of Nanostructured Surfaces Characterized in Situ Using ATR-FTIR.
    Vrancken N; Sergeant S; Vereecke G; Doumen G; Holsteyns F; Terryn H; De Gendt S; Xu X
    Langmuir; 2017 Apr; 33(15):3601-3609. PubMed ID: 28335608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capturing wetting states in nanopatterned silicon.
    Xu X; Vereecke G; Chen C; Pourtois G; Armini S; Verellen N; Tsai WK; Kim DW; Lee E; Lin CY; Van Dorpe P; Struyf H; Holsteyns F; Moshchalkov V; Indekeu J; De Gendt S
    ACS Nano; 2014 Jan; 8(1):885-93. PubMed ID: 24380402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the Effects of Nanopatterned Surfaces on Wetting States of Droplets.
    Xiao K; Zhao Y; Ouyang G; Li X
    Nanoscale Res Lett; 2017 Dec; 12(1):309. PubMed ID: 28449550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metastable wetting on superhydrophobic surfaces: continuum and atomistic views of the Cassie-Baxter-Wenzel transition.
    Giacomello A; Chinappi M; Meloni S; Casciola CM
    Phys Rev Lett; 2012 Nov; 109(22):226102. PubMed ID: 23368136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slippery Wenzel State.
    Dai X; Stogin BB; Yang S; Wong TS
    ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drop Impact on Two-Tier Monostable Superrepellent Surfaces.
    Shi S; Lv C; Zheng Q
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43698-43707. PubMed ID: 31644872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Dynamics Simulation on the Wettability of Nanoscale Wrinkles: High Water Adhesion of Rose Petals.
    Shao J; Huang Y; Zhao M; Yang Y; Zheng Y; Zhu R
    Langmuir; 2022 Jul; 38(29):8854-8861. PubMed ID: 35834741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monostable superrepellent materials.
    Li Y; Quéré D; Lv C; Zheng Q
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3387-3392. PubMed ID: 28280098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces.
    Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ
    Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair?
    Bormashenko E; Pogreb R; Whyman G; Erlich M
    Langmuir; 2007 Jun; 23(12):6501-3. PubMed ID: 17497815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.