These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30229305)

  • 41. Advantages of binocular vision for the control of reaching and grasping.
    Melmoth DR; Grant S
    Exp Brain Res; 2006 May; 171(3):371-88. PubMed ID: 16323004
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Parallels in control of voluntary and perturbation-evoked reach-to-grasp movements: EMG and kinematics.
    Gage WH; Zabjek KF; Hill SW; McIlroy WE
    Exp Brain Res; 2007 Aug; 181(4):627-37. PubMed ID: 17487477
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Systematic Influence of Perceived Grasp Shape on Speech Production.
    Vainio L; Rantala A; Tiainen M; Tiippana K; Komeilipoor N; Vainio M
    PLoS One; 2017; 12(1):e0170221. PubMed ID: 28103278
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relevance of grasp types to assess functionality for personal autonomy.
    Gracia-Ibáñez V; Sancho-Bru JL; Vergara M
    J Hand Ther; 2018; 31(1):102-110. PubMed ID: 28341325
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selective Influences of Precision and Power Grips on Speech Categorization.
    Tiainen M; Tiippana K; Vainio M; Peromaa T; Komeilipoor N; Vainio L
    PLoS One; 2016; 11(3):e0151688. PubMed ID: 26978074
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prehension with the ipsilesional hand after unilateral brain damage.
    Hermsdörfer J; Ulrich S; Marquardt C; Goldenberg G; Mai N
    Cortex; 1999 Apr; 35(2):139-61. PubMed ID: 10369090
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dexterity is impaired at both hands following unilateral subcortical middle cerebral artery stroke.
    Nowak DA; Grefkes C; Dafotakis M; Küst J; Karbe H; Fink GR
    Eur J Neurosci; 2007 May; 25(10):3173-84. PubMed ID: 17561831
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Is the hand to speech what speech is to the hand?
    Mildner V
    Brain Cogn; 2000; 43(1-3):345-9. PubMed ID: 10857722
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation.
    Jenmalm P; Dahlstedt S; Johansson RS
    J Neurophysiol; 2000 Dec; 84(6):2984-97. PubMed ID: 11110826
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of handedness and reachability on perceived distance.
    Linkenauger SA; Witt JK; Stefanucci JK; Bakdash JZ; Proffitt DR
    J Exp Psychol Hum Percept Perform; 2009 Dec; 35(6):1649-60. PubMed ID: 19968426
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Finger movements during reach-to-grasp in the monkey: amplitude scaling of a temporal synergy.
    Theverapperuma LS; Hendrix CM; Mason CR; Ebner TJ
    Exp Brain Res; 2006 Mar; 169(4):433-48. PubMed ID: 16292639
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The contribution of cognitive, kinematic, and dynamic factors to anticipatory grasp selection.
    Herbort O; Butz MV; Kunde W
    Exp Brain Res; 2014 Jun; 232(6):1677-88. PubMed ID: 24534913
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Increases in motor cortical excitability during mirror visual feedback of a precision grasp is influenced by vision and movement of the opposite limb.
    Jegatheeswaran G; Vesia M; Isayama R; Gunraj C; Chen R
    Neurosci Lett; 2018 Aug; 681():31-36. PubMed ID: 29787788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparison of the reach-to-grasp movement between children and adults: a kinematic study.
    Zoia S; Pezzetta E; Blason L; Scabar A; Carrozzi M; Bulgheroni M; Castiello U
    Dev Neuropsychol; 2006; 30(2):719-38. PubMed ID: 16995833
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Human string-pulling with and without a string: movement, sensory control, and memory.
    Singh S; Mandziak A; Barr K; Blackwell AA; Mohajerani MH; Wallace DG; Whishaw IQ
    Exp Brain Res; 2019 Dec; 237(12):3431-3447. PubMed ID: 31734786
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional coupling between the limbs during bimanual reach-to-grasp movements.
    Jackson GM; German K; Peacock K
    Hum Mov Sci; 2002 Sep; 21(3):317-33. PubMed ID: 12381391
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional magnetic resonance adaptation reveals the involvement of the dorsomedial stream in hand orientation for grasping.
    Monaco S; Cavina-Pratesi C; Sedda A; Fattori P; Galletti C; Culham JC
    J Neurophysiol; 2011 Nov; 106(5):2248-63. PubMed ID: 21795615
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The coordination of hand transport and grasp formation during single- and double-perturbed human prehension movements.
    Dubrowski A; Bock O; Carnahan H; Jüngling S
    Exp Brain Res; 2002 Aug; 145(3):365-71. PubMed ID: 12136386
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Movement kinematics in prehension are affected by grasping objects of different mass.
    Eastough D; Edwards MG
    Exp Brain Res; 2007 Jan; 176(1):193-8. PubMed ID: 17072606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.