These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 30229617)
1. [Spatial Interpolation Methods and Pollution Assessment of Heavy Metals of Soil in Typical Areas]. Ma HH; Yu T; Yang ZF; Hou QY; Zeng QL; Wang R Huan Jing Ke Xue; 2018 Oct; 39(10):4684-4693. PubMed ID: 30229617 [TBL] [Abstract][Full Text] [Related]
2. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing. Qiao P; Lei M; Yang S; Yang J; Guo G; Zhou X Environ Sci Pollut Res Int; 2018 Jun; 25(16):15597-15608. PubMed ID: 29572743 [TBL] [Abstract][Full Text] [Related]
3. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648 [TBL] [Abstract][Full Text] [Related]
4. [Prediction of Distribution of Soil Cd Concentrations in Guangdong Province, China]. Sun H; Guo ZX; Guo Y; Yuan YZ; Chai M; Bi RT; Yang J Huan Jing Ke Xue; 2017 May; 38(5):2111-2124. PubMed ID: 29965120 [TBL] [Abstract][Full Text] [Related]
5. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis. Xie Y; Chen TB; Lei M; Yang J; Guo QJ; Song B; Zhou XY Chemosphere; 2011 Jan; 82(3):468-76. PubMed ID: 20970158 [TBL] [Abstract][Full Text] [Related]
6. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loid)s Pollution Based on Kriging Interpolation and BP Neural Network. Jia Z; Zhou S; Su Q; Yi H; Wang J Int J Environ Res Public Health; 2017 Dec; 15(1):. PubMed ID: 29278363 [TBL] [Abstract][Full Text] [Related]
7. Assessment of Ordinary Kriging and Inverse Distance Weighting Methods for Modeling Chromium and Cadmium Soil Pollution in E-Waste Sites in Douala, Cameroon. Ouabo RE; Sangodoyin AY; Ogundiran MB J Health Pollut; 2020 Jun; 10(26):200605. PubMed ID: 32509406 [TBL] [Abstract][Full Text] [Related]
8. The identification of 'hotspots' of heavy metal pollution in soil-rice systems at a regional scale in eastern China. Li W; Xu B; Song Q; Liu X; Xu J; Brookes PC Sci Total Environ; 2014 Feb; 472():407-20. PubMed ID: 24295757 [TBL] [Abstract][Full Text] [Related]
9. Optimizing spatial interpolation method and sampling number for predicting cadmium distribution in the largest shallow lake of North China. Wen L; Zhang L; Bai J; Wang Y; Wei Z; Liu H Chemosphere; 2022 Dec; 309(Pt 2):136789. PubMed ID: 36223825 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. Ding Q; Wang Y; Zhuang D J Environ Manage; 2018 Apr; 212():23-31. PubMed ID: 29427938 [TBL] [Abstract][Full Text] [Related]
11. Effectiveness of predicting spatial contaminant distributions at industrial sites using partitioned interpolation method. Qiao P; Yang S; Wei W; Li P; Cheng Y; Liang S; Lei M; Chen T Environ Geochem Health; 2021 Jan; 43(1):23-36. PubMed ID: 32696201 [TBL] [Abstract][Full Text] [Related]
12. Spatial distribution prediction of soil As in a large-scale arsenic slag contaminated site based on an integrated model and multi-source environmental data. Liu G; Zhou X; Li Q; Shi Y; Guo G; Zhao L; Wang J; Su Y; Zhang C Environ Pollut; 2020 Dec; 267():115631. PubMed ID: 33254608 [TBL] [Abstract][Full Text] [Related]
13. Estimation of spatial distribution of heavy metals in groundwater using interpolation methods and multivariate statistical techniques; its suitability for drinking and irrigation purposes in the Middle Black Sea Region of Turkey. Arslan H; Ayyildiz Turan N Environ Monit Assess; 2015 Aug; 187(8):516. PubMed ID: 26202813 [TBL] [Abstract][Full Text] [Related]
14. Improving the mapping accuracy of soil heavy metals through an adaptive multi-fidelity interpolation method. Ju L; Guo S; Ruan X; Wang Y Environ Pollut; 2023 Aug; 330():121827. PubMed ID: 37187280 [TBL] [Abstract][Full Text] [Related]
15. [Comparison of various spatial interpolation methods for non-stationary regional soil mercury content]. Hu KL; Li BG; Lu YZ; Zhang FR Huan Jing Ke Xue; 2004 May; 25(3):132-7. PubMed ID: 15327270 [TBL] [Abstract][Full Text] [Related]
16. Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites. Qiao P; Li P; Cheng Y; Wei W; Yang S; Lei M; Chen T Environ Geochem Health; 2019 Dec; 41(6):2709-2730. PubMed ID: 31144251 [TBL] [Abstract][Full Text] [Related]
17. [Evaluation on environmental quality of heavy metals in agricultural soils of Shanghai]. Meng F; Liu M; Shi TG Huan Jing Ke Xue; 2008 Feb; 29(2):428-33. PubMed ID: 18613516 [TBL] [Abstract][Full Text] [Related]
18. Dataset characteristics influence the performance of different interpolation methods for soil salinity spatial mapping. Fazeli Sangani M; Namdar Khojasteh D; Owens G Environ Monit Assess; 2019 Oct; 191(11):684. PubMed ID: 31659465 [TBL] [Abstract][Full Text] [Related]
19. [Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City]. Liu S; Wu QY; Cao XJ; Wang JN; Zhang LL; Cai DQ; Zhou LY; Liu N Huan Jing Ke Xue; 2016 Jan; 37(1):270-9. PubMed ID: 27078967 [TBL] [Abstract][Full Text] [Related]
20. [Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin'an]. Fang XB; Shi H; Liao XF; Lou Z; Zhou LY; Yu HX; Yao L; Sun LP Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1883-91. PubMed ID: 26572046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]