BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30229865)

  • 1. Synthetic repetitive extragenic palindromic (REP) sequence as an efficient mRNA stabilizer for protein production and metabolic engineering in prokaryotic cells.
    Deng C; Lv X; Li J; Liu Y; Du G; Amaro RL; Liu L
    Biotechnol Bioeng; 2019 Jan; 116(1):5-18. PubMed ID: 30229865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial Fine-Tuning of GNA1 and GlmS Expression by 5'-Terminus Fusion Engineering Leads to Overproduction of N-Acetylglucosamine in Bacillus subtilis.
    Ma W; Liu Y; Wang Y; Lv X; Li J; Du G; Liu L
    Biotechnol J; 2019 Mar; 14(3):e1800264. PubMed ID: 30105781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? A review.
    Higgins CF; McLaren RS; Newbury SF
    Gene; 1988 Dec; 72(1-2):3-14. PubMed ID: 3072249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
    Matano C; Uhde A; Youn JW; Maeda T; Clermont L; Marin K; Krämer R; Wendisch VF; Seibold GM
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5633-43. PubMed ID: 24668244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production.
    Liu Y; Zhu Y; Li J; Shin HD; Chen RR; Du G; Liu L; Chen J
    Metab Eng; 2014 May; 23():42-52. PubMed ID: 24560814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of translationally active mRNA by prokaryotic REP sequences.
    Newbury SF; Smith NH; Robinson EC; Hiles ID; Higgins CF
    Cell; 1987 Jan; 48(2):297-310. PubMed ID: 2433046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. REP sequences: Mediators of the environmental stress response?
    Liang W; Deutscher MP
    RNA Biol; 2016; 13(2):152-6. PubMed ID: 26574793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for REP sequences in regulating translation.
    Liang W; Rudd KE; Deutscher MP
    Mol Cell; 2015 May; 58(3):431-9. PubMed ID: 25891074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Corynebacterium glutamicum for the efficient production of N-acetylglucosamine.
    Li Z; Wang Q; Liu H; Wang Y; Zheng Z; Zhang Y; Tan T
    Bioresour Technol; 2023 Dec; 390():129865. PubMed ID: 37832852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis.
    Gu Y; Deng J; Liu Y; Li J; Shin HD; Du G; Chen J; Liu L
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of
    Deng C; Lv X; Liu Y; Li J; Lu W; Du G; Liu L
    Synth Syst Biotechnol; 2019 Sep; 4(3):120-129. PubMed ID: 31198861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of a repetitive extragenic palindromic (REP) sequence downstream from the structural gene of Escherichia coli glutamate dehydrogenase affects the stability of its mRNA.
    Merino E; Becerril B; Valle F; Bolivar F
    Gene; 1987; 58(2-3):305-9. PubMed ID: 2828193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose.
    Chin YW; Park JB; Park YC; Kim KH; Seo JH
    Bioprocess Biosyst Eng; 2013 Jun; 36(6):749-56. PubMed ID: 23404100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production.
    Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM
    J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient expression of cyclodextrin glycosyltransferase from Geobacillus stearothermophilus in Escherichia coli by promoter engineering and downstream box evolution.
    Deng C; Li J; Shin HD; Du G; Chen J; Liu L
    J Biotechnol; 2018 Jan; 266():77-83. PubMed ID: 29247671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production.
    Yoon J; Woo HM
    Biotechnol Bioeng; 2018 Aug; 115(8):2067-2074. PubMed ID: 29704438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repetitive extragenic palindromic sequences: a major component of the bacterial genome.
    Stern MJ; Ames GF; Smith NH; Robinson EC; Higgins CF
    Cell; 1984 Jul; 37(3):1015-26. PubMed ID: 6378385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of cat messenger RNA decay suggests that turnover occurs by endonucleolytic cleavage in a 3' to 5' direction.
    Meyer BJ; Schottel JL
    Mol Microbiol; 1992 May; 6(9):1095-104. PubMed ID: 1316985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of the leader region of mRNA for translation initiation of ColE2 Rep protein.
    Nagase T; Nishio SY; Itoh T
    Plasmid; 2007 Nov; 58(3):249-60. PubMed ID: 17720244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.