These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30229897)

  • 1. Single-cell genetic analysis of clonal dynamics in colorectal adenomas indicates CDX2 gain as a predictor of recurrence.
    Fiedler D; Heselmeyer-Haddad K; Hirsch D; Hernandez LS; Torres I; Wangsa D; Hu Y; Zapata L; Rueschoff J; Belle S; Ried T; Gaiser T
    Int J Cancer; 2019 Apr; 144(7):1561-1573. PubMed ID: 30229897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new whole genome amplification method for studying clonal evolution patterns in malignant colorectal polyps.
    Hirsch D; Camps J; Varma S; Kemmerling R; Stapleton M; Ried T; Gaiser T
    Genes Chromosomes Cancer; 2012 May; 51(5):490-500. PubMed ID: 22334367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessments of clonal composition of colorectal adenomas by FISH analysis of chromosomes 1, 7, 13 and 20.
    Bomme L; Lothe RA; Bardi G; Fenger C; Kronborg O; Heim S
    Int J Cancer; 2001 Jun; 92(6):816-23. PubMed ID: 11351301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular alterations in colorectal adenomas and intramucosal adenocarcinomas defined by high-density single-nucleotide polymorphism arrays.
    Eizuka M; Sugai T; Habano W; Uesugi N; Takahashi Y; Kawasaki K; Yamamoto E; Suzuki H; Matsumoto T
    J Gastroenterol; 2017 Nov; 52(11):1158-1168. PubMed ID: 28197804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic Alterations and Complex Subclonal Architecture in Sporadic GH-Secreting Pituitary Adenomas.
    Hage M; Viengchareun S; Brunet E; Villa C; Pineau D; Bouligand J; Teglas JP; Adam C; Parker F; Lombès M; Tachdjian G; Gaillard S; Chanson P; Tosca L; Kamenický P
    J Clin Endocrinol Metab; 2018 May; 103(5):1929-1939. PubMed ID: 29474559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic instability and oncogene amplifications in colorectal adenomas predict recurrence and synchronous carcinoma.
    Habermann JK; Brucker CA; Freitag-Wolf S; Heselmeyer-Haddad K; Krüger S; Barenboim L; Downing T; Bruch HP; Auer G; Roblick UJ; Ried T
    Mod Pathol; 2011 Apr; 24(4):542-55. PubMed ID: 21102417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression.
    Carvalho B; Postma C; Mongera S; Hopmans E; Diskin S; van de Wiel MA; van Criekinge W; Thas O; Matthäi A; Cuesta MA; Terhaar Sive Droste JS; Craanen M; Schröck E; Ylstra B; Meijer GA
    Gut; 2009 Jan; 58(1):79-89. PubMed ID: 18829976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas.
    Lassmann S; Weis R; Makowiec F; Roth J; Danciu M; Hopt U; Werner M
    J Mol Med (Berl); 2007 Mar; 85(3):293-304. PubMed ID: 17143621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability.
    Hermsen M; Postma C; Baak J; Weiss M; Rapallo A; Sciutto A; Roemen G; Arends JW; Williams R; Giaretti W; De Goeij A; Meijer G
    Gastroenterology; 2002 Oct; 123(4):1109-19. PubMed ID: 12360473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide DNA methylation analysis of colorectal adenomas with and without recurrence reveals an association between cytosine-phosphate-guanine methylation and histological subtypes.
    Fiedler D; Hirsch D; El Hajj N; Yang HH; Hu Y; Sticht C; Nanda I; Belle S; Rueschoff J; Lee MP; Ried T; Haaf T; Gaiser T
    Genes Chromosomes Cancer; 2019 Nov; 58(11):783-797. PubMed ID: 31334584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progression from colorectal adenoma to carcinoma is associated with non-random chromosomal gains as detected by comparative genomic hybridisation.
    Meijer GA; Hermsen MA; Baak JP; van Diest PJ; Meuwissen SG; Beliën JA; Hoovers JM; Joenje H; Snijders PJ; Walboomers JM
    J Clin Pathol; 1998 Dec; 51(12):901-9. PubMed ID: 10070331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct chromosomal imbalances in nonpolypoid and polypoid colorectal adenomas indicate different genetic pathways in the development of colorectal neoplasms.
    Richter H; Slezak P; Walch A; Werner M; Braselmann H; Jaramillo E; Ost A; Hirata I; Takahama K; Zitzelsberger H
    Am J Pathol; 2003 Jul; 163(1):287-94. PubMed ID: 12819033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome arm 20q gains and other genomic alterations in colorectal cancer metastatic to liver, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization.
    Korn WM; Yasutake T; Kuo WL; Warren RS; Collins C; Tomita M; Gray J; Waldman FM
    Genes Chromosomes Cancer; 1999 Jun; 25(2):82-90. PubMed ID: 10337990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosomal instability in flat adenomas and carcinomas of the colon.
    Postma C; Hermsen MA; Coffa J; Baak JP; Mueller JD; Mueller E; Bethke B; Schouten JP; Stolte M; Meijer GA
    J Pathol; 2005 Mar; 205(4):514-21. PubMed ID: 15685687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of single cell-derived colorectal cancer cell lines is dominated by the continued selection of tumor-specific genomic imbalances, despite random chromosomal instability.
    Wangsa D; Braun R; Schiefer M; Gertz EM; Bronder D; Quintanilla I; Padilla-Nash HM; Torres I; Hunn C; Warner L; Buishand FO; Hu Y; Hirsch D; Gaiser T; Camps J; Schwartz R; Schäffer AA; Heselmeyer-Haddad K; Ried T
    Carcinogenesis; 2018 Jul; 39(8):993-1005. PubMed ID: 29800151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TPX2 and AURKA promote 20q amplicon-driven colorectal adenoma to carcinoma progression.
    Sillars-Hardebol AH; Carvalho B; Tijssen M; Beliën JA; de Wit M; Delis-van Diemen PM; Pontén F; van de Wiel MA; Fijneman RJ; Meijer GA
    Gut; 2012 Nov; 61(11):1568-75. PubMed ID: 22207630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recurrent genetic alterations in 26 colorectal carcinomas and 21 adenomas from Chinese patients.
    He QJ; Zeng WF; Sham JS; Xie D; Yang XW; Lin HL; Zhan WH; Lin F; Zeng SD; Nie D; Ma LF; Li CJ; Lu S; Guan XY
    Cancer Genet Cytogenet; 2003 Jul; 144(2):112-8. PubMed ID: 12850373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytogenetic analysis of colorectal adenomas: karyotypic comparisons of synchronous tumors.
    Bomme L; Bardi G; Pandis N; Fenger C; Kronborg O; Heim S
    Cancer Genet Cytogenet; 1998 Oct; 106(1):66-71. PubMed ID: 9772912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single nucleotide polymorphism array profiling identifies distinct chromosomal aberration patterns across colorectal adenomas and carcinomas.
    Zarzour P; Boelen L; Luciani F; Beck D; Sakthianandeswaren A; Mouradov D; Sieber OM; Hawkins NJ; Hesson LB; Ward RL; Wong JW
    Genes Chromosomes Cancer; 2015 May; 54(5):303-14. PubMed ID: 25726927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consensus molecular subtype classification of colorectal adenomas.
    Komor MA; Bosch LJ; Bounova G; Bolijn AS; Delis-van Diemen PM; Rausch C; Hoogstrate Y; Stubbs AP; de Jong M; Jenster G; van Grieken NC; Carvalho B; Wessels LF; Jimenez CR; Fijneman RJ; Meijer GA;
    J Pathol; 2018 Nov; 246(3):266-276. PubMed ID: 29968252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.