BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30229911)

  • 41. Natural ACE inhibitory peptides discovery from Spirulina (Arthrospira platensis) strain C1.
    Anekthanakul K; Senachak J; Hongsthong A; Charoonratana T; Ruengjitchatchawalya M
    Peptides; 2019 Aug; 118():170107. PubMed ID: 31229668
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling of the relationship between dipeptide structure and dipeptide stability, permeability, and ACE inhibitory activity.
    Foltz M; van Buren L; Klaffke W; Duchateau GS
    J Food Sci; 2009 Sep; 74(7):H243-51. PubMed ID: 19895477
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigating the Transepithelial Transport and Enzymatic Stability of Lactononadecapeptide (NIPPLTQTPVVVPPFLQPE), a 19-Amino Acid Casein-Derived Peptide in Caco-2 Cells.
    Nakatani E; Sasai M; Miyazaki H; Tanaka S; Hirota T; Okura T
    J Agric Food Chem; 2024 Jun; 72(22):12719-12724. PubMed ID: 38789103
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transport of free and peptide-bound glycated amino acids: synthesis, transepithelial flux at Caco-2 cell monolayers, and interaction with apical membrane transport proteins.
    Hellwig M; Geissler S; Matthes R; Peto A; Silow C; Brandsch M; Henle T
    Chembiochem; 2011 May; 12(8):1270-9. PubMed ID: 21538757
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The apical (hPepT1) and basolateral peptide transport systems of Caco-2 cells are regulated by AMP-activated protein kinase.
    Pieri M; Christian HC; Wilkins RJ; Boyd CA; Meredith D
    Am J Physiol Gastrointest Liver Physiol; 2010 Jul; 299(1):G136-43. PubMed ID: 20430871
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of an angiotensin-I-converting enzyme inhibitory peptide from tilapia (Oreochromis niloticus) with captopril: inhibition kinetics, in vivo effect, simulated gastrointestinal digestion and a molecular docking study.
    Chen J; Ryu B; Zhang Y; Liang P; Li C; Zhou C; Yang P; Hong P; Qian ZJ
    J Sci Food Agric; 2020 Jan; 100(1):315-324. PubMed ID: 31525262
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of beta-turn structure on the passive diffusion of peptides across Caco-2 cell monolayers.
    Knipp GT; Vander Velde DG; Siahaan TJ; Borchardt RT
    Pharm Res; 1997 Oct; 14(10):1332-40. PubMed ID: 9358544
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation, purification and the anti-hypertensive effect of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from Ruditapes philippinarum fermented with Bacillus natto.
    Chen Y; Gao X; Wei Y; Liu Q; Jiang Y; Zhao L; Ulaah S
    Food Funct; 2018 Oct; 9(10):5230-5237. PubMed ID: 30206615
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of goby (Zosterisessor ophiocephalus) muscle proteins.
    Nasri R; Chataigné G; Bougatef A; Chaâbouni MK; Dhulster P; Nasri M; Nedjar-Arroume N
    J Proteomics; 2013 Oct; 91():444-52. PubMed ID: 23920242
    [TBL] [Abstract][Full Text] [Related]  

  • 50. H(+)-coupled dipeptide (glycylsarcosine) transport across apical and basal borders of human intestinal Caco-2 cell monolayers display distinctive characteristics.
    Thwaites DT; Brown CD; Hirst BH; Simmons NL
    Biochim Biophys Acta; 1993 Sep; 1151(2):237-45. PubMed ID: 8373798
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito.
    Yokoyama K; Chiba H; Yoshikawa M
    Biosci Biotechnol Biochem; 1992 Oct; 56(10):1541-5. PubMed ID: 1369054
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms of transport of quinapril in Caco-2 cell monolayers: comparison with cephalexin.
    Hu M; Zheng L; Chen J; Liu L; Zhu Y; Dantzig AH; Stratford RE
    Pharm Res; 1995 Aug; 12(8):1120-5. PubMed ID: 7494822
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transport, In Vivo Antihypertensive Effect, and Pharmacokinetics of an Angiotensin-Converting Enzyme (ACE) Inhibitory Peptide LVLPGE.
    Pei J; Hua Y; Zhou T; Gao X; Dang Y; Wang Y
    J Agric Food Chem; 2021 Feb; 69(7):2149-2156. PubMed ID: 33560131
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Function and immunolocalization of overexpressed human intestinal H+/peptide cotransporter in adenovirus-transduced Caco-2 cells.
    Hsu CP; Walter E; Merkle HP; Rothen-Rutishauser B; Wunderli-Allenspach H; Hilfinger JM; Amidon GL
    AAPS PharmSci; 1999; 1(3):E12. PubMed ID: 11741208
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of tryptophan-containing peptides on angiotensin-converting enzyme activity and vessel tone ex vivo and in vivo.
    Khedr S; Deussen A; Kopaliani I; Zatschler B; Martin M
    Eur J Nutr; 2018 Apr; 57(3):907-915. PubMed ID: 28102435
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Permeation of Acamprosate Is Predominantly Caused by Paracellular Diffusion across Caco-2 Cell Monolayers: A Paracellular Modeling Approach.
    Antonescu IE; Rasmussen KF; Neuhoff S; Fretté X; Karlgren M; Bergström CAS; Nielsen CU; Steffansen B
    Mol Pharm; 2019 Nov; 16(11):4636-4650. PubMed ID: 31560549
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Omics-prediction of bioactive peptides from the edible cyanobacterium Arthrospira platensis proteome.
    Ji C; Han J; Zhang J; Hu J; Fu Y; Qi H; Sun Y; Yu C
    J Sci Food Agric; 2018 Feb; 98(3):984-990. PubMed ID: 28708310
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of in Vitro Gastrointestinal Digestion and Transepithelial Transport on Antioxidant and ACE-Inhibitory Activities of Brewer's Spent Yeast Autolysate.
    Vieira EF; das Neves J; Vitorino R; Dias da Silva D; Carmo H; Ferreira IM
    J Agric Food Chem; 2016 Oct; 64(39):7335-7341. PubMed ID: 27603923
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Do the cardiovascular effects of angiotensin-converting enzyme (ACE) I involve ACE-independent mechanisms? new insights from proline-rich peptides of Bothrops jararaca.
    Ianzer D; Santos RA; Etelvino GM; Xavier CH; de Almeida Santos J; Mendes EP; Machado LT; Prezoto BC; Dive V; de Camargo AC
    J Pharmacol Exp Ther; 2007 Aug; 322(2):795-805. PubMed ID: 17475904
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioactive peptides in ovine and caprine cheeselike systems prepared with proteases from Cynara cardunculus.
    Silva SV; Pihlanto A; Malcata FX
    J Dairy Sci; 2006 Sep; 89(9):3336-44. PubMed ID: 16899666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.