These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3022994)

  • 1. The 724 family of DNA sequences is interspersed about the pericentromeric regions of human acrocentric chromosomes.
    Kurnit DM; Roy S; Stewart GD; Schwedock J; Neve RL; Bruns GA; Van Keuren ML; Patterson D
    Cytogenet Cell Genet; 1986; 43(1-2):109-16. PubMed ID: 3022994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent evolution of DNA sequence homology in the pericentromeric regions of human acrocentric chromosomes.
    Kurnit DM; Neve RL; Morton CC; Bruns GA; Ma NS; Cox DR; Klinger HP
    Cytogenet Cell Genet; 1984; 38(2):99-105. PubMed ID: 6205826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular organization of human centromeric regions reveals high-frequency, polymorphic macro DNA repeats.
    Jabs EW; Goble CA; Cutting GR
    Proc Natl Acad Sci U S A; 1989 Jan; 86(1):202-6. PubMed ID: 2911568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Acquisition of the sequence of a new subclass of human alpha- satellite DNA, localized in the centromere regions of two pairs of acrocentric chromosomes].
    Gar'kavtsev IV; Tsvetkov TG; Shilova NV; Raevskaia GV
    Mol Gen Mikrobiol Virusol; 1989 Jun; (6):25-9. PubMed ID: 2811898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cloned sequence, p82H, of the alphoid repeated DNA family found at the centromeres of all human chromosomes.
    Mitchell AR; Gosden JR; Miller DA
    Chromosoma; 1985; 92(5):369-77. PubMed ID: 2996845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of satellite III subfamilies to the acrocentric chromosomes.
    Bandyopadhyay R; McQuillan C; Page SL; Choo KH; Shaffer LG
    Chromosome Res; 2001; 9(3):223-33. PubMed ID: 11330397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beta satellite DNA: characterization and localization of two subfamilies from the distal and proximal short arms of the human acrocentric chromosomes.
    Greig GM; Willard HF
    Genomics; 1992 Mar; 12(3):573-80. PubMed ID: 1559708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A homologous subfamily of satellite III DNA on human chromosomes 14 and 22.
    Choo KH; Earle E; McQuillan C
    Nucleic Acids Res; 1990 Oct; 18(19):5641-8. PubMed ID: 2216757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosomal localization of complex and simple repeated human DNAs.
    Manuelidis L
    Chromosoma; 1978 Mar; 66(1):23-32. PubMed ID: 639625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new multisequence family in human.
    Assum G; Fink T; Klett C; Lengl B; Schanbacher M; Uhl S; Wöhr G
    Genomics; 1991 Oct; 11(2):397-409. PubMed ID: 1769654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Satellite DNA sequences in the human acrocentric chromosomes: information from translocations and heteromorphisms.
    Gosden JR; Lawrie SS; Gosden CM
    Am J Hum Genet; 1981 Mar; 33(2):243-51. PubMed ID: 6163355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The p-Arms of Human Acrocentric Chromosomes Play by a Different Set of Rules.
    McStay B
    Annu Rev Genomics Hum Genet; 2023 Aug; 24():63-83. PubMed ID: 36854315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Existence of a negative correlation in the level of satellite DNA III and the number of rRNA gene repeats, localized on the short arms of human acrocentric chromosomes].
    Voskoboĭnik NI; Kroshkina VN; Nagle EF; Miliutikov SA
    Genetika; 1993 Feb; 29(2):212-6. PubMed ID: 8486251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of a GC-rich telomeric satellite DNA in Eumeces schneideri Daudin (Reptilia, Scincidae).
    Giovannotti M; Nisi Cerioni P; Caputo V; Olmo E
    Cytogenet Genome Res; 2009; 125(4):272-8. PubMed ID: 19864890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of rapidly evolving genomic sequences: construction of a differential library and identification of a human DNA fragment that does not hybridize to chimpanzee DNA.
    Lisitsyn NA; Launer GA; Wagner LL; Akopyanz NS; Martynov VI; Lelikova GP; Limborska SA; Polukarova LG; Sverdlov ED
    Biomed Sci; 1990; 1(5):513-6. PubMed ID: 2133068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Cloned fragment of human alphoid DNA--a molecular marker of the pericentromeric region of chromosome 18].
    Aleksandrov IA; Iurov IuB; Mitkevich SP; Gindilis VM
    Genetika; 1986 May; 22(5):868-76. PubMed ID: 3460927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosomal DNA clusters in pulsed-field gel electrophoretic analysis of human acrocentric chromosomes.
    Srivastava AK; Hagino Y; Schlessinger D
    Mamm Genome; 1993; 4(8):445-50. PubMed ID: 8374207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of acrocentric cen-pter satellite DNA in Robertsonian translocation and chromosomal non-disjunction.
    Choo KH
    Mol Biol Med; 1990 Oct; 7(5):437-49. PubMed ID: 2095460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The topographic organization of repetitive DNA in the human nucleolus.
    Kaplan FS; Murray J; Sylvester JE; Gonzalez IL; O'Connor JP; Doering JL; Muenke M; Emanuel BS; Zasloff MA
    Genomics; 1993 Jan; 15(1):123-32. PubMed ID: 8432523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular organization in the proximal region of human acrocentric chromosomes.
    Graham GJ; Baro DJ; Garcia MJ; Cummings MR
    Ann N Y Acad Sci; 1985; 450():55-67. PubMed ID: 3860181
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.