BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30229951)

  • 1. Comparative evaluation of autocontouring in clinical practice: A practical method using the Turing test.
    Gooding MJ; Smith AJ; Tariq M; Aljabar P; Peressutti D; van der Stoep J; Reymen B; Emans D; Hattu D; van Loon J; de Rooy M; Wanders R; Peeters S; Lustberg T; van Soest J; Dekker A; van Elmpt W
    Med Phys; 2018 Nov; 45(11):5105-5115. PubMed ID: 30229951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck.
    Teguh DN; Levendag PC; Voet PW; Al-Mamgani A; Han X; Wolf TK; Hibbard LS; Nowak P; Akhiat H; Dirkx ML; Heijmen BJ; Hoogeman MS
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):950-7. PubMed ID: 20932664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy.
    Byun HK; Chang JS; Choi MS; Chun J; Jung J; Jeong C; Kim JS; Chang Y; Chung SY; Lee S; Kim YB
    Radiat Oncol; 2021 Oct; 16(1):203. PubMed ID: 34649569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating performance of a user-trained MR lung tumor autocontouring algorithm in the context of intra- and interobserver variations.
    Yip E; Yun J; Gabos Z; Baker S; Yee D; Wachowicz K; Rathee S; Fallone BG
    Med Phys; 2018 Jan; 45(1):307-313. PubMed ID: 29159957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic detection of contouring errors using convolutional neural networks.
    Rhee DJ; Cardenas CE; Elhalawani H; McCarroll R; Zhang L; Yang J; Garden AS; Peterson CB; Beadle BM; Court LE
    Med Phys; 2019 Nov; 46(11):5086-5097. PubMed ID: 31505046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of multiple-vendor AI autocontouring solutions.
    Goddard L; Velten C; Tang J; Skalina KA; Boyd R; Martin W; Basavatia A; Garg M; Tomé WA
    Radiat Oncol; 2024 May; 19(1):69. PubMed ID: 38822385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atlas-based segmentation improves consistency and decreases time required for contouring postoperative endometrial cancer nodal volumes.
    Young AV; Wortham A; Wernick I; Evans A; Ennis RD
    Int J Radiat Oncol Biol Phys; 2011 Mar; 79(3):943-7. PubMed ID: 21281897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A particle filter based autocontouring algorithm for lung tumor tracking using dynamic magnetic resonance imaging.
    Bourque AE; Bedwani S; Filion É; Carrier JF
    Med Phys; 2016 Sep; 43(9):5161. PubMed ID: 27587046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetric impact of contour editing on CT and MRI deep-learning autosegmentation for brain OARs.
    Alzahrani NM; Henry AM; Clark AK; Al-Qaisieh BM; Murray LJ; Nix MG
    J Appl Clin Med Phys; 2024 May; 25(5):e14345. PubMed ID: 38664894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrospective Validation and Clinical Implementation of Automated Contouring of Organs at Risk in the Head and Neck: A Step Toward Automated Radiation Treatment Planning for Low- and Middle-Income Countries.
    McCarroll RE; Beadle BM; Balter PA; Burger H; Cardenas CE; Dalvie S; Followill DS; Kisling KD; Mejia M; Naidoo K; Nelson CL; Peterson CB; Vorster K; Wetter J; Zhang L; Court LE; Yang J
    J Glob Oncol; 2018 Jul; 4():1-11. PubMed ID: 30110221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical Use of a Commercial Artificial Intelligence-Based Software for Autocontouring in Radiation Therapy: Geometric Performance and Dosimetric Impact.
    Hoque SMH; Pirrone G; Matrone F; Donofrio A; Fanetti G; Caroli A; Rista RS; Bortolus R; Avanzo M; Drigo A; Chiovati P
    Cancers (Basel); 2023 Dec; 15(24):. PubMed ID: 38136281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.
    Li D; Liu L; Chen J; Li H; Yin Y; Ibragimov B; Xing L
    Phys Med Biol; 2017 Jan; 62(1):272-288. PubMed ID: 27991439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic contouring of normal tissues with deep learning for preclinical radiation studies.
    Lappas G; Wolfs CJA; Staut N; Lieuwes NG; Biemans R; van Hoof SJ; Dubois LJ; Verhaegen F
    Phys Med Biol; 2022 Feb; 67(4):. PubMed ID: 35061600
    [No Abstract]   [Full Text] [Related]  

  • 14. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer.
    Lustberg T; van Soest J; Gooding M; Peressutti D; Aljabar P; van der Stoep J; van Elmpt W; Dekker A
    Radiother Oncol; 2018 Feb; 126(2):312-317. PubMed ID: 29208513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical Evaluation of Deep Learning and Atlas-Based Auto-Contouring of Bladder and Rectum for Prostate Radiation Therapy.
    Zabel WJ; Conway JL; Gladwish A; Skliarenko J; Didiodato G; Goorts-Matthews L; Michalak A; Reistetter S; King J; Nakonechny K; Malkoske K; Tran MN; McVicar N
    Pract Radiat Oncol; 2021; 11(1):e80-e89. PubMed ID: 32599279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lung tumor segmentation methods: Impact on the uncertainty of radiomics features for non-small cell lung cancer.
    Owens CA; Peterson CB; Tang C; Koay EJ; Yu W; Mackin DS; Li J; Salehpour MR; Fuentes DT; Court LE; Yang J
    PLoS One; 2018; 13(10):e0205003. PubMed ID: 30286184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic contouring QA method using a deep learning-based autocontouring system.
    Rhee DJ; Akinfenwa CPA; Rigaud B; Jhingran A; Cardenas CE; Zhang L; Prajapati S; Kry SF; Brock KK; Beadle BM; Shaw W; O'Reilly F; Parkes J; Burger H; Fakie N; Trauernicht C; Simonds H; Court LE
    J Appl Clin Med Phys; 2022 Aug; 23(8):e13647. PubMed ID: 35580067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical validation of an automatic atlas-based segmentation tool for male pelvis CT images.
    Casati M; Piffer S; Calusi S; Marrazzo L; Simontacchi G; Di Cataldo V; Greto D; Desideri I; Vernaleone M; Francolini G; Livi L; Pallotta S
    J Appl Clin Med Phys; 2022 Mar; 23(3):e13507. PubMed ID: 35064746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting.
    Kumarasiri A; Siddiqui F; Liu C; Yechieli R; Shah M; Pradhan D; Zhong H; Chetty IJ; Kim J
    Med Phys; 2014 Dec; 41(12):121712. PubMed ID: 25471959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A clinical and time savings evaluation of a deep learning automatic contouring algorithm.
    Ginn JS; Gay HA; Hilliard J; Shah J; Mistry N; Möhler C; Hugo GD; Hao Y
    Med Dosim; 2023 Spring; 48(1):55-60. PubMed ID: 36550000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.