These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 30230309)
21. Potassium Difluorophosphate as an Electrolyte Additive for Potassium-Ion Batteries. Yang H; Chen CY; Hwang J; Kubota K; Matsumoto K; Hagiwara R ACS Appl Mater Interfaces; 2020 Aug; 12(32):36168-36176. PubMed ID: 32692540 [TBL] [Abstract][Full Text] [Related]
22. Stable Sodium-Based Batteries with Advanced Electrolytes and Layered-Oxide Cathodes. Lamb J; Manthiram A ACS Appl Mater Interfaces; 2022 Jun; 14(25):28865-28872. PubMed ID: 35723441 [TBL] [Abstract][Full Text] [Related]
23. Long-life potassium metal batteries enabled by anion-derived solid electrolyte interphase using concentrated ionic liquid electrolytes. Jeon J; Kang S; Koo B; Kim H; Hong ST; Lee H J Colloid Interface Sci; 2024 Sep; 670():617-625. PubMed ID: 38781652 [TBL] [Abstract][Full Text] [Related]
24. Electrolyte Chemistry Enables Simultaneous Stabilization of Potassium Metal and Alloying Anode for Potassium-Ion Batteries. Wang H; Yu D; Wang X; Niu Z; Chen M; Cheng L; Zhou W; Guo L Angew Chem Int Ed Engl; 2019 Nov; 58(46):16451-16455. PubMed ID: 31482655 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous Stabilization of Potassium Metal and Superoxide in K-O Xiao N; Gourdin G; Wu Y Angew Chem Int Ed Engl; 2018 Aug; 57(34):10864-10867. PubMed ID: 29787628 [TBL] [Abstract][Full Text] [Related]
26. Influence of Electrolyte on the Electrode/Electrolyte Interface Formation on InSb Electrode in Mg-Ion Batteries. Mohammad I; Blondeau L; Leroy J; Khodja H; Gauthier M Molecules; 2021 Sep; 26(18):. PubMed ID: 34577192 [TBL] [Abstract][Full Text] [Related]
27. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Suo L; Xue W; Gobet M; Greenbaum SG; Wang C; Chen Y; Yang W; Li Y; Li J Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1156-1161. PubMed ID: 29351993 [TBL] [Abstract][Full Text] [Related]
28. Strategies for Harnessing High Rate and Cycle Performance from Graphite Electrodes in Potassium-Ion Batteries. Kaushik S; Kubota K; Hwang J; Matsumoto K; Hagiwara R ACS Appl Mater Interfaces; 2022 Mar; 14(12):14302-14312. PubMed ID: 35302758 [TBL] [Abstract][Full Text] [Related]
29. Electrochemical performance and interfacial properties of Li-metal in lithium bis(fluorosulfonyl)imide based electrolytes. Younesi R; Bardé F Sci Rep; 2017 Nov; 7(1):15925. PubMed ID: 29162891 [TBL] [Abstract][Full Text] [Related]
30. An Intrinsically Non-flammable Electrolyte for High-Performance Potassium Batteries. Liu S; Mao J; Zhang Q; Wang Z; Pang WK; Zhang L; Du A; Sencadas V; Zhang W; Guo Z Angew Chem Int Ed Engl; 2020 Feb; 59(9):3638-3644. PubMed ID: 31840345 [TBL] [Abstract][Full Text] [Related]
31. Elucidating the beneficial effect of vinylene carbonate on the electrochemistry of antimony electrodes in lithium batteries. Martín F; Morales J; Sánchez L Chemphyschem; 2008 Dec; 9(17):2610-7. PubMed ID: 18988210 [TBL] [Abstract][Full Text] [Related]
32. Comprehensive Insights into the Reactivity of Electrolytes Based on Sodium Ions. Eshetu GG; Grugeon S; Kim H; Jeong S; Wu L; Gachot G; Laruelle S; Armand M; Passerini S ChemSusChem; 2016 Mar; 9(5):462-71. PubMed ID: 26834069 [TBL] [Abstract][Full Text] [Related]
33. Interfacial Reactivity of Silicon Electrodes: Impact of Electrolyte Solvent and Presence of Conductive Carbon. Vila MN; Bernardez EM; Li W; Stackhouse CA; Kern CJ; Head AR; Tong X; Yan S; Wang L; Bock DC; Takeuchi KJ; Housel LM; Marschilok AC; Takeuchi ES ACS Appl Mater Interfaces; 2022 May; 14(18):20404-20417. PubMed ID: 35358380 [TBL] [Abstract][Full Text] [Related]
34. Optimal utilization of fluoroethylene carbonate in potassium ion batteries. Zhang C; Chen J; Yin X; Sun Y; Yang W; Yu F; Liu X; Fu L; Chen Y; Wu Y Chem Commun (Camb); 2021 Feb; 57(13):1607-1610. PubMed ID: 33443497 [TBL] [Abstract][Full Text] [Related]
35. Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis. Muñoz-Márquez MA; Zarrabeitia M; Castillo-Martínez E; Eguía-Barrio A; Rojo T; Casas-Cabanas M ACS Appl Mater Interfaces; 2015 Apr; 7(14):7801-8. PubMed ID: 25811538 [TBL] [Abstract][Full Text] [Related]
36. Enabling Reversible (De)Lithiation of Aluminum by using Bis(fluorosulfonyl)imide-Based Electrolytes. Qin B; Jeong S; Zhang H; Ulissi U; Vieira Carvalho D; Varzi A; Passerini S ChemSusChem; 2019 Jan; 12(1):208-212. PubMed ID: 30277019 [TBL] [Abstract][Full Text] [Related]
37. Deciphering the Ethylene Carbonate-Propylene Carbonate Mystery in Li-Ion Batteries. Xing L; Zheng X; Schroeder M; Alvarado J; von Wald Cresce A; Xu K; Li Q; Li W Acc Chem Res; 2018 Feb; 51(2):282-289. PubMed ID: 29381050 [TBL] [Abstract][Full Text] [Related]
38. Improvement of Electrochemical Stability Using the Eutectic Composition of a Ternary Molten Salt System for Highly Concentrated Electrolytes for Na-Ion Batteries. Hwang J; Sivasengaran AN; Yang H; Yamamoto H; Takeuchi T; Matsumoto K; Hagiwara R ACS Appl Mater Interfaces; 2021 Jan; 13(2):2538-2546. PubMed ID: 33400498 [TBL] [Abstract][Full Text] [Related]
39. Effects of Propylene Carbonate Content in CsPF₆-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries. Zheng J; Yan P; Cao R; Xiang H; Engelhard MH; Polzin BJ; Wang C; Zhang JG; Xu W ACS Appl Mater Interfaces; 2016 Mar; 8(8):5715-22. PubMed ID: 26862677 [TBL] [Abstract][Full Text] [Related]
40. Polyacrylonitrile-Reinforced Composite Gel Polymer Electrolytes for Stable Potassium Metal Anodes. Zhang Y; Bahi A; Ko F; Liu J Small; 2022 Feb; 18(8):e2107186. PubMed ID: 35092137 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]