These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 30230311)
1. Maintenance DNA Methyltransferase Activity in the Presence of Oxidized Forms of 5-Methylcytosine: Structural Basis for Ten Eleven Translocation-Mediated DNA Demethylation. Seiler CL; Fernandez J; Koerperich Z; Andersen MP; Kotandeniya D; Nguyen ME; Sham YY; Tretyakova NY Biochemistry; 2018 Oct; 57(42):6061-6069. PubMed ID: 30230311 [TBL] [Abstract][Full Text] [Related]
2. TET-TDG Active DNA Demethylation at CpG and Non-CpG Sites. DeNizio JE; Dow BJ; Serrano JC; Ghanty U; Drohat AC; Kohli RM J Mol Biol; 2021 Apr; 433(8):166877. PubMed ID: 33561435 [TBL] [Abstract][Full Text] [Related]
3. Quantification of Oxidized 5-Methylcytosine Bases and TET Enzyme Activity. Liu MY; DeNizio JE; Kohli RM Methods Enzymol; 2016; 573():365-85. PubMed ID: 27372762 [TBL] [Abstract][Full Text] [Related]
4. Preferential 5-Methylcytosine Oxidation in the Linker Region of Reconstituted Positioned Nucleosomes by Tet1 Protein. Kizaki S; Zou T; Li Y; Han YW; Suzuki Y; Harada Y; Sugiyama H Chemistry; 2016 Nov; 22(46):16598-16601. PubMed ID: 27689340 [TBL] [Abstract][Full Text] [Related]
5. Effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation. Ji D; Lin K; Song J; Wang Y Mol Biosyst; 2014 Jul; 10(7):1749-52. PubMed ID: 24789765 [TBL] [Abstract][Full Text] [Related]
6. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. Maiti A; Drohat AC J Biol Chem; 2011 Oct; 286(41):35334-35338. PubMed ID: 21862836 [TBL] [Abstract][Full Text] [Related]
7. Tet2 Catalyzes Stepwise 5-Methylcytosine Oxidation by an Iterative and de novo Mechanism. Crawford DJ; Liu MY; Nabel CS; Cao XJ; Garcia BA; Kohli RM J Am Chem Soc; 2016 Jan; 138(3):730-3. PubMed ID: 26734843 [TBL] [Abstract][Full Text] [Related]
8. Sensitive and simultaneous determination of 5-methylcytosine and its oxidation products in genomic DNA by chemical derivatization coupled with liquid chromatography-tandem mass spectrometry analysis. Tang Y; Zheng SJ; Qi CB; Feng YQ; Yuan BF Anal Chem; 2015 Mar; 87(6):3445-52. PubMed ID: 25675106 [TBL] [Abstract][Full Text] [Related]
9. Can 5-methylcytosine analogues with extended alkyl side chains guide DNA methylation? Kotandeniya D; Seiler CL; Fernandez J; Pujari SS; Curwick L; Murphy K; Wickramaratne S; Yan S; Murphy D; Sham YY; Tretyakova NY Chem Commun (Camb); 2018 Jan; 54(9):1061-1064. PubMed ID: 29323674 [TBL] [Abstract][Full Text] [Related]
10. Functional impacts of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine at a single hemi-modified CpG dinucleotide in a gene promoter. Kitsera N; Allgayer J; Parsa E; Geier N; Rossa M; Carell T; Khobta A Nucleic Acids Res; 2017 Nov; 45(19):11033-11042. PubMed ID: 28977475 [TBL] [Abstract][Full Text] [Related]
11. Ten-eleven translocation proteins (TETs): tumor suppressors or tumor enhancers? Ma C; Seong H; Liu Y; Yu X; Xu S; Li Y Front Biosci (Landmark Ed); 2021 Oct; 26(10):895-915. PubMed ID: 34719214 [TBL] [Abstract][Full Text] [Related]
12. 5-Hydroxymethylcytosine: the many faces of the sixth base of mammalian DNA. Kriukienė E; Tomkuvienė M; Klimašauskas S Chem Soc Rev; 2024 Mar; 53(5):2264-2283. PubMed ID: 38205583 [TBL] [Abstract][Full Text] [Related]
13. Mutations along a TET2 active site scaffold stall oxidation at 5-hydroxymethylcytosine. Liu MY; Torabifard H; Crawford DJ; DeNizio JE; Cao XJ; Garcia BA; Cisneros GA; Kohli RM Nat Chem Biol; 2017 Feb; 13(2):181-187. PubMed ID: 27918559 [TBL] [Abstract][Full Text] [Related]
14. Mutagenic and cytotoxic properties of oxidation products of 5-methylcytosine revealed by next-generation sequencing. Xing XW; Liu YL; Vargas M; Wang Y; Feng YQ; Zhou X; Yuan BF PLoS One; 2013; 8(9):e72993. PubMed ID: 24066027 [TBL] [Abstract][Full Text] [Related]
15. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine. Cadet J; Wagner JR Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():18-35. PubMed ID: 24045206 [TBL] [Abstract][Full Text] [Related]
16. The clinical values of dysregulated DNA methylation and demethylation intermediates in acute lymphoblastic leukemia. Cao LL; Liu H; Yue Z; Pei L; Wang H; Jia M Hematology; 2019 Dec; 24(1):567-576. PubMed ID: 31315520 [No Abstract] [Full Text] [Related]
17. Determination of oxidation products of 5-methylcytosine in plants by chemical derivatization coupled with liquid chromatography/tandem mass spectrometry analysis. Tang Y; Xiong J; Jiang HP; Zheng SJ; Feng YQ; Yuan BF Anal Chem; 2014 Aug; 86(15):7764-72. PubMed ID: 24970241 [TBL] [Abstract][Full Text] [Related]
18. TET2-mediated 5-hydroxymethylcytosine induces genetic instability and mutagenesis. Mahfoudhi E; Talhaoui I; Cabagnols X; Della Valle V; Secardin L; Rameau P; Bernard OA; Ishchenko AA; Abbes S; Vainchenker W; Saparbaev M; Plo I DNA Repair (Amst); 2016 Jul; 43():78-88. PubMed ID: 27289557 [TBL] [Abstract][Full Text] [Related]
19. Oxidized C5-methyl cytosine bases in DNA: 5-Hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine. Klungland A; Robertson AB Free Radic Biol Med; 2017 Jun; 107():62-68. PubMed ID: 27890639 [TBL] [Abstract][Full Text] [Related]
20. Screening of glycosylase activity on oxidative derivatives of methylcytosine: Pedobacter heparinus SMUG2 as a formylcytosine- and carboxylcytosine-DNA glycosylase. Chang C; Yang Y; Li J; Park SH; Fang GC; Liang C; Cao W DNA Repair (Amst); 2022 Nov; 119():103408. PubMed ID: 36179537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]