These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 30230556)
1. Identification of optimal mother wavelets in survival prediction of lung cancer patients using wavelet decomposition-based radiomic features. Soufi M; Arimura H; Nagami N Med Phys; 2018 Nov; 45(11):5116-5128. PubMed ID: 30230556 [TBL] [Abstract][Full Text] [Related]
2. Homological radiomics analysis for prognostic prediction in lung cancer patients. Ninomiya K; Arimura H Phys Med; 2020 Jan; 69():90-100. PubMed ID: 31855844 [TBL] [Abstract][Full Text] [Related]
3. Homology-based radiomic features for prediction of the prognosis of lung cancer based on CT-based radiomics. Kadoya N; Tanaka S; Kajikawa T; Tanabe S; Abe K; Nakajima Y; Yamamoto T; Takahashi N; Takeda K; Dobashi S; Takeda K; Nakane K; Jingu K Med Phys; 2020 Jun; 47(5):2197-2205. PubMed ID: 32096876 [TBL] [Abstract][Full Text] [Related]
4. Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery. Kirienko M; Cozzi L; Antunovic L; Lozza L; Fogliata A; Voulaz E; Rossi A; Chiti A; Sollini M Eur J Nucl Med Mol Imaging; 2018 Feb; 45(2):207-217. PubMed ID: 28944403 [TBL] [Abstract][Full Text] [Related]
6. Interchangeability of radiomic features between [18F]-FDG PET/CT and [18F]-FDG PET/MR. Vuong D; Tanadini-Lang S; Huellner MW; Veit-Haibach P; Unkelbach J; Andratschke N; Kraft J; Guckenberger M; Bogowicz M Med Phys; 2019 Apr; 46(4):1677-1685. PubMed ID: 30714158 [TBL] [Abstract][Full Text] [Related]
7. Impact of feature selection methods and subgroup factors on prognostic analysis with CT-based radiomics in non-small cell lung cancer patients. Sugai Y; Kadoya N; Tanaka S; Tanabe S; Umeda M; Yamamoto T; Takeda K; Dobashi S; Ohashi H; Takeda K; Jingu K Radiat Oncol; 2021 Apr; 16(1):80. PubMed ID: 33931085 [TBL] [Abstract][Full Text] [Related]
8. Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images. van Timmeren JE; Leijenaar RTH; van Elmpt W; Reymen B; Oberije C; Monshouwer R; Bussink J; Brink C; Hansen O; Lambin P Radiother Oncol; 2017 Jun; 123(3):363-369. PubMed ID: 28506693 [TBL] [Abstract][Full Text] [Related]
9. Stability and reproducibility of computed tomography radiomic features extracted from peritumoral regions of lung cancer lesions. Tunali I; Hall LO; Napel S; Cherezov D; Guvenis A; Gillies RJ; Schabath MB Med Phys; 2019 Nov; 46(11):5075-5085. PubMed ID: 31494946 [TBL] [Abstract][Full Text] [Related]
10. Application and limitation of radiomics approach to prognostic prediction for lung stereotactic body radiotherapy using breath-hold CT images with random survival forest: A multi-institutional study. Kakino R; Nakamura M; Mitsuyoshi T; Shintani T; Kokubo M; Negoro Y; Fushiki M; Ogura M; Itasaka S; Yamauchi C; Otsu S; Sakamoto T; Sakamoto M; Araki N; Hirashima H; Adachi T; Matsuo Y; Mizowaki T Med Phys; 2020 Sep; 47(9):4634-4643. PubMed ID: 32645224 [TBL] [Abstract][Full Text] [Related]
11. Pre-treatment CT radiomics to predict 3-year overall survival following chemoradiotherapy of esophageal cancer. Larue RTHM; Klaassen R; Jochems A; Leijenaar RTH; Hulshof MCCM; van Berge Henegouwen MI; Schreurs WMJ; Sosef MN; van Elmpt W; van Laarhoven HWM; Lambin P Acta Oncol; 2018 Nov; 57(11):1475-1481. PubMed ID: 30067421 [TBL] [Abstract][Full Text] [Related]
12. Radiomic feature stability across 4D respiratory phases and its impact on lung tumor prognosis prediction. Du Q; Baine M; Bavitz K; McAllister J; Liang X; Yu H; Ryckman J; Yu L; Jiang H; Zhou S; Zhang C; Zheng D PLoS One; 2019; 14(5):e0216480. PubMed ID: 31063500 [TBL] [Abstract][Full Text] [Related]
13. Associations of Radiomic Data Extracted from Static and Respiratory-Gated CT Scans with Disease Recurrence in Lung Cancer Patients Treated with SBRT. Huynh E; Coroller TP; Narayan V; Agrawal V; Romano J; Franco I; Parmar C; Hou Y; Mak RH; Aerts HJ PLoS One; 2017; 12(1):e0169172. PubMed ID: 28046060 [TBL] [Abstract][Full Text] [Related]
14. Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients: Evaluation of the added prognostic value for overall survival and locoregional recurrence. van Timmeren JE; van Elmpt W; Leijenaar RTH; Reymen B; Monshouwer R; Bussink J; Paelinck L; Bogaert E; De Wagter C; Elhaseen E; Lievens Y; Hansen O; Brink C; Lambin P Radiother Oncol; 2019 Jul; 136():78-85. PubMed ID: 31015133 [TBL] [Abstract][Full Text] [Related]
16. Prospective external validation of radiomics-based predictive model of distant metastasis after dynamic tumor tracking stereotactic body radiation therapy in patients with non-small-cell lung cancer: A multi-institutional analysis. Adachi T; Nakamura M; Matsuo Y; Karasawa K; Kokubo M; Sakamoto T; Hiraoka M; Mizowaki T J Appl Clin Med Phys; 2024 Oct; 25(10):e14475. PubMed ID: 39178139 [TBL] [Abstract][Full Text] [Related]
17. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms. Altazi BA; Zhang GG; Fernandez DC; Montejo ME; Hunt D; Werner J; Biagioli MC; Moros EG J Appl Clin Med Phys; 2017 Nov; 18(6):32-48. PubMed ID: 28891217 [TBL] [Abstract][Full Text] [Related]
18. Integrative nomogram of CT imaging, clinical, and hematological features for survival prediction of patients with locally advanced non-small cell lung cancer. Wang L; Dong T; Xin B; Xu C; Guo M; Zhang H; Feng D; Wang X; Yu J Eur Radiol; 2019 Jun; 29(6):2958-2967. PubMed ID: 30643940 [TBL] [Abstract][Full Text] [Related]
19. Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Fornacon-Wood I; Mistry H; Ackermann CJ; Blackhall F; McPartlin A; Faivre-Finn C; Price GJ; O'Connor JPB Eur Radiol; 2020 Nov; 30(11):6241-6250. PubMed ID: 32483644 [TBL] [Abstract][Full Text] [Related]
20. The prognostic value of CT radiomic features for patients with pulmonary adenocarcinoma treated with EGFR tyrosine kinase inhibitors. Kim H; Park CM; Keam B; Park SJ; Kim M; Kim TM; Kim DW; Heo DS; Goo JM PLoS One; 2017; 12(11):e0187500. PubMed ID: 29099855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]