These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Size Control and Fluorescence Labeling of Polydopamine Melanin-Mimetic Nanoparticles for Intracellular Imaging. Amin DR; Sugnaux C; Lau KHA; Messersmith PB Biomimetics (Basel); 2017 Sep; 2(3):. PubMed ID: 29360110 [TBL] [Abstract][Full Text] [Related]
3. Resveratrol-loaded core-shell nanostructured delivery systems: Cyclodextrin-based metal-organic nanocapsules prepared by ionic gelation. Qiu C; Julian McClements D; Jin Z; Qin Y; Hu Y; Xu X; Wang J Food Chem; 2020 Jul; 317():126328. PubMed ID: 32087520 [TBL] [Abstract][Full Text] [Related]
4. Deciphering and Controlling Structural and Functional Parameters of the Shells in Vesicle-Templated Polymer Nanocapsules. Dergunov SA; Richter AG; Kim MD; Pingali SV; Urban VS; Pinkhassik E Langmuir; 2019 Oct; 35(40):13020-13030. PubMed ID: 31403799 [TBL] [Abstract][Full Text] [Related]
5. Resveratrol-loaded chitosan-pectin core-shell nanoparticles as novel drug delivery vehicle for sustained release and improved antioxidant activities. Sarma S; Agarwal S; Bhuyan P; Hazarika J; Ganguly M R Soc Open Sci; 2022 Feb; 9(2):210784. PubMed ID: 35127111 [TBL] [Abstract][Full Text] [Related]
6. Interfacially active polydopamine for nanoparticle stabilized nanocapsules in a one-pot assembly strategy toward efficient drug delivery. Ding T; Wang L; Zhang J; Xing Y; Cai K J Mater Chem B; 2018 Mar; 6(12):1754-1763. PubMed ID: 32254247 [TBL] [Abstract][Full Text] [Related]
7. Preparation of polydopamine nanocapsules in a miscible tetrahydrofuran-buffer mixture. Ni YZ; Jiang WF; Tong GS; Chen JX; Wang J; Li HM; Yu CY; Huang XH; Zhou YF Org Biomol Chem; 2015 Jan; 13(3):686-90. PubMed ID: 25424983 [TBL] [Abstract][Full Text] [Related]
8. Sugar-induced self-assembly of curcumin-based polydopamine nanocapsules with high loading capacity for dual drug delivery. Wong S; Cao C; Lessio M; Stenzel MH Nanoscale; 2022 Jul; 14(26):9448-9458. PubMed ID: 35735130 [TBL] [Abstract][Full Text] [Related]
9. Mussel inspired protein-mediated surface modification to electrospun fibers and their potential biomedical applications. Xie J; Michael PL; Zhong S; Ma B; MacEwan MR; Lim CT J Biomed Mater Res A; 2012 Apr; 100(4):929-38. PubMed ID: 22275174 [TBL] [Abstract][Full Text] [Related]
10. Bowl-Shaped Polydopamine Nanocapsules: Control of Morphology via Template-Free Synthesis. Sun Y; Davis E Langmuir; 2020 Aug; 36(32):9333-9342. PubMed ID: 32787131 [TBL] [Abstract][Full Text] [Related]
11. Lipid-core nanocapsules improve the effects of resveratrol against Abeta-induced neuroinflammation. Frozza RL; Bernardi A; Hoppe JB; Meneghetti AB; Battastini AM; Pohlmann AR; Guterres SS; Salbego C J Biomed Nanotechnol; 2013 Dec; 9(12):2086-104. PubMed ID: 24266263 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of emamectin benzoate nanocapsules based on the dual role of polydopamine. Shi L; Yan W; Sun L; Hou C; Wei N; Chen Z; Feng J Pest Manag Sci; 2022 Oct; 78(10):4407-4416. PubMed ID: 35767285 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of a simple high performance thin layer chromatography method combined with direct 1,1-diphenyl-2-picrylhydrazyl assay to quantify free radical scavenging activity in wine. Agatonovic-Kustrin S; Morton DW; Yusof AP Food Chem; 2016 Apr; 197(Pt A):285-90. PubMed ID: 26616951 [TBL] [Abstract][Full Text] [Related]
14. Nanocapsules: the weapons for novel drug delivery systems. Kothamasu P; Kanumur H; Ravur N; Maddu C; Parasuramrajam R; Thangavel S Bioimpacts; 2012; 2(2):71-81. PubMed ID: 23678444 [TBL] [Abstract][Full Text] [Related]
15. Architectural layer-by-layer assembly of drug nanocapsules with PEGylated polyelectrolytes. Shutava TG; Pattekari PP; Arapov KA; Torchilin VP; Lvov YM Soft Matter; 2012 Jan; 8(36):9418-9427. PubMed ID: 23144650 [TBL] [Abstract][Full Text] [Related]
16. Protein-only nanocapsules induce cross-presentation in dendritic cells, demonstrating potential as an antigen delivery system. Taki AC; Francis JE; Skakic I; Dekiwadia C; McLean TR; Bansal V; Smooker PM Nanomedicine; 2020 Aug; 28():102234. PubMed ID: 32522709 [TBL] [Abstract][Full Text] [Related]
17. Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. Frozza RL; Bernardi A; Paese K; Hoppe JB; da Silva T; Battastini AM; Pohlmann AR; Guterres SS; Salbego C J Biomed Nanotechnol; 2010 Dec; 6(6):694-703. PubMed ID: 21361135 [TBL] [Abstract][Full Text] [Related]
18. Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects. Coradini K; Lima FO; Oliveira CM; Chaves PS; Athayde ML; Carvalho LM; Beck RC Eur J Pharm Biopharm; 2014 Sep; 88(1):178-85. PubMed ID: 24780440 [TBL] [Abstract][Full Text] [Related]
19. Chlorhexidine Nanocapsule Drug Delivery Approach to the Resin-Dentin Interface. Priyadarshini BM; Selvan ST; Lu TB; Xie H; Neo J; Fawzy AS J Dent Res; 2016 Aug; 95(9):1065-72. PubMed ID: 27422859 [TBL] [Abstract][Full Text] [Related]
20. Radical-scavenging activity and mechanism of resveratrol-oriented analogues: influence of the solvent, radical, and substitution. Shang YJ; Qian YP; Liu XD; Dai F; Shang XL; Jia WQ; Liu Q; Fang JG; Zhou B J Org Chem; 2009 Jul; 74(14):5025-31. PubMed ID: 19472994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]