These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30230810)

  • 1. Disentangling the Role of Surface Chemical Interactions on Interfacial Charge Transport at BiVO
    Eichhorn J; Kastl C; Schwartzberg AM; Sharp ID; Toma FM
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35129-35136. PubMed ID: 30230810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting.
    Kim TW; Ping Y; Galli GA; Choi KS
    Nat Commun; 2015 Oct; 6():8769. PubMed ID: 26498984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale imaging of charge carrier transport in water splitting photoanodes.
    Eichhorn J; Kastl C; Cooper JK; Ziegler D; Schwartzberg AM; Sharp ID; Toma FM
    Nat Commun; 2018 Jul; 9(1):2597. PubMed ID: 30013111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrochemical Water Splitting System--A Study of Interfacial Charge Transfer with Scanning Electrochemical Microscopy.
    Zhang B; Zhang X; Xiao X; Shen Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1606-14. PubMed ID: 26720831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WO
    Choi J; Sudhagar P; Kim JH; Kwon J; Kim J; Terashima C; Fujishima A; Song T; Paik U
    Phys Chem Chem Phys; 2017 Feb; 19(6):4648-4655. PubMed ID: 28124693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved photocatalytic and photoelectrochemical performance of monoclinic bismuth vanadate by surface defect states (Bi
    Tayyebi A; Soltani T; Hong H; Lee BK
    J Colloid Interface Sci; 2018 Mar; 514():565-575. PubMed ID: 29291555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation.
    Kim ES; Kang HJ; Magesh G; Kim JY; Jang JW; Lee JS
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17762-9. PubMed ID: 25232699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Importance of the Interfacial Contact: Is Reduced Graphene Oxide Always an Enhancer in Photo(Electro)Catalytic Water Oxidation?
    Xie Z; Tan HL; Wen X; Suzuki Y; Iwase A; Kudo A; Amal R; Scott J; Ng YH
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23125-23134. PubMed ID: 31134788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the interfacial characteristics of BiVO
    Hermans Y; Murcia-López S; Klein A; van de Krol R; Andreu T; Morante JR; Toupance T; Jaegermann W
    Phys Chem Chem Phys; 2019 Feb; 21(9):5086-5096. PubMed ID: 30762849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.
    Favaro M; Abdi FF; Lamers M; Crumlin EJ; Liu Z; van de Krol R; Starr DE
    J Phys Chem B; 2018 Jan; 122(2):801-809. PubMed ID: 28853574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring of Interfacial Band Offsets by an Atomically Thin Polar Insulating Layer To Enhance the Water-Splitting Performance of Oxide Heterojunction Photoanodes.
    Kim TL; Choi MJ; Lee TH; Sohn W; Jang HW
    Nano Lett; 2019 Sep; 19(9):5897-5903. PubMed ID: 31095915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Formation of a Disordered Layer on Monoclinic BiVO
    Kim JK; Cho Y; Jeong MJ; Levy-Wendt B; Shin D; Yi Y; Wang DH; Zheng X; Park JH
    ChemSusChem; 2018 Mar; 11(5):933-940. PubMed ID: 29274301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding Photocharging Effects on Bismuth Vanadate.
    Liu EY; Thorne JE; He Y; Wang D
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22083-22087. PubMed ID: 28644002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeing the Polarons to Facilitate Charge Transport in BiVO
    Qiu W; Xiao S; Ke J; Wang Z; Tang S; Zhang K; Qian W; Huang Y; Huang D; Tong Y; Yang S
    Angew Chem Int Ed Engl; 2019 Dec; 58(52):19087-19095. PubMed ID: 31617959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe
    Gao Y; Li Y; Yang G; Li S; Xiao N; Xu B; Liu S; Qiu P; Hao S; Ge L
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39713-39722. PubMed ID: 30346126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smoothing Surface Trapping States in 3D Coral-Like CoOOH-Wrapped-BiVO
    Tang F; Cheng W; Su H; Zhao X; Liu Q
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6228-6234. PubMed ID: 29384358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pristine GaFeO
    Sun X; Wang M; Li HF; Meng L; Lv XJ; Li L; Li M
    Adv Sci (Weinh); 2023 Mar; 10(8):e2205907. PubMed ID: 36658721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation on the role of W doping in BiVO
    Zhao X; Hu J; Chen S; Chen Z
    Phys Chem Chem Phys; 2018 May; 20(19):13637-13645. PubMed ID: 29737988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting.
    Kim TW; Choi KS
    Science; 2014 Feb; 343(6174):990-4. PubMed ID: 24526312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Efficient Photoelectrochemical Water Splitting with an Immobilized Molecular Co
    Wang Y; Li F; Zhou X; Yu F; Du J; Bai L; Sun L
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6911-6915. PubMed ID: 28474835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.