These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 30230848)
1. Unidirectional Droplet Transport on the Biofabricated Butterfly Wing. Li P; Zhang B; Zhao H; Zhang L; Wang Z; Xu X; Fu T; Wang X; Hou Y; Fan Y; Wang L Langmuir; 2018 Oct; 34(41):12482-12487. PubMed ID: 30230848 [TBL] [Abstract][Full Text] [Related]
2. Biased Motions of a Droplet on the Inclined Micro-conical Superhydrophobic Surface. Li P; Xu X; Yu Y; Wang L; Ji B ACS Appl Mater Interfaces; 2021 Jun; 13(23):27687-27695. PubMed ID: 34100284 [TBL] [Abstract][Full Text] [Related]
4. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
5. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation. Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806 [TBL] [Abstract][Full Text] [Related]
6. Droplet Impact on Anisotropic Superhydrophobic Surfaces. Guo C; Zhao D; Sun Y; Wang M; Liu Y Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832 [TBL] [Abstract][Full Text] [Related]
7. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation. Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869 [TBL] [Abstract][Full Text] [Related]
8. Velocity-Switched Droplet Rebound Direction on Anisotropic Superhydrophobic Surfaces. Li P; Zhan F; Wang L Small; 2024 Feb; 20(6):e2305568. PubMed ID: 37752749 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures. Zhang P; Maeda Y; Lv F; Takata Y; Orejon D ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681 [TBL] [Abstract][Full Text] [Related]
10. Two-Photon Polymerization of Butterfly Wing Scale Inspired Surfaces with Anisotropic Wettability. Ren Z; Yang Z; Srinivasaraghavan Govindarajan R; Madiyar F; Cheng M; Kim D; Jiang Y ACS Appl Mater Interfaces; 2024 Feb; 16(7):9362-9370. PubMed ID: 38324407 [TBL] [Abstract][Full Text] [Related]
11. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces. Miljkovic N; Preston DJ; Enright R; Wang EN ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667 [TBL] [Abstract][Full Text] [Related]
12. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces. Chu F; Wu X; Wang L ACS Appl Mater Interfaces; 2017 Mar; 9(9):8420-8425. PubMed ID: 28222256 [TBL] [Abstract][Full Text] [Related]
13. Droplet Impact on Asymmetric Hydrophobic Microstructures. Yada S; Lacis U; van der Wijngaart W; Lundell F; Amberg G; Bagheri S Langmuir; 2022 Jul; 38(26):7956-7964. PubMed ID: 35737474 [TBL] [Abstract][Full Text] [Related]
14. Dynamic Anti-Icing Performance of Flexible Hybrid Superhydropohobic Surfaces. Hou Y; Zhan F; Fan W; Wang L ACS Appl Mater Interfaces; 2023 Aug; 15(34):41162-41169. PubMed ID: 37587085 [TBL] [Abstract][Full Text] [Related]
15. Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces. Chen T; Cong Q; Qi Y; Jin J; Choy KL PLoS One; 2018; 13(1):e0188775. PubMed ID: 29385390 [TBL] [Abstract][Full Text] [Related]
16. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces. Aili A; Li H; Alhosani MH; Zhang T ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890 [TBL] [Abstract][Full Text] [Related]
17. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Bixler GD; Bhushan B Nanoscale; 2013 Sep; 5(17):7685-710. PubMed ID: 23884183 [TBL] [Abstract][Full Text] [Related]
18. Electrostatic charging of jumping droplets. Miljkovic N; Preston DJ; Enright R; Wang EN Nat Commun; 2013; 4():2517. PubMed ID: 24071721 [TBL] [Abstract][Full Text] [Related]
19. Spatial variations and temporal metastability of the self-cleaning and superhydrophobic properties of damselfly wings. Hasan J; Webb HK; Truong VK; Watson GS; Watson JA; Tobin MJ; Gervinskas G; Juodkazis S; Wang JY; Crawford RJ; Ivanova EP Langmuir; 2012 Dec; 28(50):17404-9. PubMed ID: 23181510 [TBL] [Abstract][Full Text] [Related]
20. Synthetic Butterfly Scale Surfaces with Compliance-Tailored Anisotropic Drop Adhesion. Zhao H; Park SJ; Solomon BR; Kim S; Soto D; Paxson AT; Varanasi KK; Hart AJ Adv Mater; 2019 Apr; 31(14):e1807686. PubMed ID: 30761627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]