These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30230848)

  • 21. Droplet Directional Movement on the Homogeneously Structured Superhydrophobic Surface with the Gradient Non-Wettability.
    Lu Y; Shen Y; Tao J; Wu Z; Chen H; Jia Z; Xu Y; Xie X
    Langmuir; 2020 Feb; 36(4):880-888. PubMed ID: 31939676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings.
    Liu C; Ju J; Zheng Y; Jiang L
    ACS Nano; 2014 Feb; 8(2):1321-9. PubMed ID: 24397580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the Role of Habitat on the Wettability of Cicada Wings.
    Oh J; Dana CE; Hong S; Román JK; Jo KD; Hong JW; Nguyen J; Cropek DM; Alleyne M; Miljkovic N
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):27173-27184. PubMed ID: 28719187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces.
    Yan X; Qin Y; Chen F; Zhao G; Sett S; Hoque MJ; Rabbi KF; Zhang X; Wang Z; Li L; Chen F; Feng J; Miljkovic N
    ACS Nano; 2020 Oct; 14(10):12796-12809. PubMed ID: 33052666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drag Reduction of Anisotropic Superhydrophobic Surfaces Prepared by Laser Etching.
    Tuo Y; Zhang H; Rong W; Jiang S; Chen W; Liu X
    Langmuir; 2019 Aug; 35(34):11016-11022. PubMed ID: 31364849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow.
    Bixler GD; Bhushan B
    Nanoscale; 2014 Jan; 6(1):76-96. PubMed ID: 24212921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced Jumping-Droplet Departure.
    Kim MK; Cha H; Birbarah P; Chavan S; Zhong C; Xu Y; Miljkovic N
    Langmuir; 2015 Dec; 31(49):13452-66. PubMed ID: 26571384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sunflower-Inspired Superhydrophobic Surface with Composite Structured Microcone Array for Anisotropy Liquid/Ice Manipulation.
    Yang J; Liu G; Zhang K; Li P; Yan H; Yan Y; Zheng Y; Zhao Z; Zhang L; Liu X; Yang G; Chen H
    Small; 2024 Aug; ():e2403420. PubMed ID: 39136202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove.
    Lu D; Zhao M; Zhang H; Yang Y; Zheng Y
    Langmuir; 2020 May; 36(19):5444-5453. PubMed ID: 32311257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioinspired Wire-on-Pillar Magneto-Responsive Superhydrophobic Arrays.
    Wei C; Zong Y; Jiang Y
    ACS Appl Mater Interfaces; 2023 May; 15(20):24989-24998. PubMed ID: 37167596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oriented bouncing of droplets with a small Weber number on inclined one-dimensional nanoforests.
    Li M; Guo Q; Wen J; Zhan F; Shi M; Zhou N; Huang C; Wang L; Mao H
    Nanoscale; 2024 Mar; 16(10):5343-5351. PubMed ID: 38375552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes.
    Cha H; Chun JM; Sotelo J; Miljkovic N
    ACS Nano; 2016 Sep; 10(9):8223-32. PubMed ID: 27447844
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Particulate-Droplet Coalescence and Self-Transport on Superhydrophobic Surfaces.
    Yan X; Ji B; Feng L; Wang X; Yang D; Rabbi KF; Peng Q; Hoque MJ; Jin P; Bello E; Sett S; Alleyne M; Cropek DM; Miljkovic N
    ACS Nano; 2022 Aug; 16(8):12910-12921. PubMed ID: 35960260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions.
    Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single Condensation Droplet Self-Ejection from Divergent Structures with Uniform Wettability.
    Di Novo NG; Bagolini A; Pugno NM
    ACS Nano; 2024 Mar; 18(12):8626-8640. PubMed ID: 38417167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves.
    Peng Q; Yan X; Li J; Li L; Cha H; Ding Y; Dang C; Jia L; Miljkovic N
    Langmuir; 2020 Aug; 36(32):9510-9522. PubMed ID: 32689802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Verification of icephobic/anti-icing properties of a superhydrophobic surface.
    Wang Y; Xue J; Wang Q; Chen Q; Ding J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.