These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30230890)

  • 1. Twin-Image-Free Holography: A Compressive Sensing Approach.
    Zhang W; Cao L; Brady DJ; Zhang H; Cang J; Zhang H; Jin G
    Phys Rev Lett; 2018 Aug; 121(9):093902. PubMed ID: 30230890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution to the twin image problem in holography.
    Latychevskaia T; Fink HW
    Phys Rev Lett; 2007 Jun; 98(23):233901. PubMed ID: 17677906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-beam digital holographic reconstruction: a phase-support enhanced complex wavefront on phase-only function for twin-image elimination.
    Kyeremah C; Weiss M; Kandel D; Haehn D; Yelleswarapu C
    J Biomed Opt; 2024 Jul; 29(7):076502. PubMed ID: 39006313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on object-plane constraints and hologram expansion in phase retrieval algorithms for continuous-wave terahertz inline digital holography reconstruction.
    Hu J; Li Q; Cui S
    Appl Opt; 2014 Oct; 53(30):7112-9. PubMed ID: 25402801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sampling and processing for compressive holography [Invited].
    Lim S; Marks DL; Brady DJ
    Appl Opt; 2011 Dec; 50(34):H75-86. PubMed ID: 22193030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When holography meets coherent diffraction imaging.
    Latychevskaia T; Longchamp JN; Fink HW
    Opt Express; 2012 Dec; 20(27):28871-92. PubMed ID: 23263128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparsity-based continuous wave terahertz lens-free on-chip holography with sub-wavelength resolution.
    Li Z; Yan Q; Qin Y; Kong W; Li G; Zou M; Wang D; You Z; Zhou X
    Opt Express; 2019 Jan; 27(2):702-713. PubMed ID: 30696152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction.
    Wang H; Lyu M; Situ G
    Opt Express; 2018 Sep; 26(18):22603-22614. PubMed ID: 30184918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving inverse problems for optical scanning holography using an adaptively iterative shrinkage-thresholding algorithm.
    Zhao F; Qu X; Zhang X; Poon TC; Kim T; Kim YS; Liang J
    Opt Express; 2012 Mar; 20(6):5942-54. PubMed ID: 22418470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparsity-assisted solution to the twin image problem in phase retrieval.
    Gaur C; Mohan B; Khare K
    J Opt Soc Am A Opt Image Sci Vis; 2015 Nov; 32(11):1922-7. PubMed ID: 26560905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis on viewing angle change in Fresnel and Fourier holographic images reconstructed by a tilted plane wave.
    Chae BG
    Appl Opt; 2014 May; 53(15):3203-12. PubMed ID: 24922205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partition calculation for zero-order and conjugate image removal in digital in-line holography.
    Ma L; Wang H; Li Y; Jin H
    Opt Express; 2012 Jan; 20(2):1805-15. PubMed ID: 22274525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital holographic phase imaging based on phase iteratively enhanced compressive sensing.
    Luo Z; Ma J; Su P; Cao L
    Opt Lett; 2019 Mar; 44(6):1395-1398. PubMed ID: 30874659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple-image encryption by compressive holography.
    Di H; Zheng K; Zhang X; Lam EY; Kim T; Kim YS; Poon TC; Zhou C
    Appl Opt; 2012 Mar; 51(7):1000-9. PubMed ID: 22410905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms.
    Volkov VV; Han MG; Zhu Y
    Ultramicroscopy; 2013 Nov; 134():175-84. PubMed ID: 23911214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speckle-free digital holographic recording of a diffusely reflecting object.
    Kim YS; Kim T; Woo SS; Kang H; Poon TC; Zhou C
    Opt Express; 2013 Apr; 21(7):8183-9. PubMed ID: 23571908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient compressive holographic reconstruction based on hologram segmentation.
    Yu X; Ban J; Xiao J; Li X; Wang K; Yu J; Bao X
    Appl Opt; 2021 Nov; 60(31):9844-9851. PubMed ID: 34807172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iterative phase retrieval for digital holography: tutorial.
    Latychevskaia T
    J Opt Soc Am A Opt Image Sci Vis; 2019 Dec; 36(12):D31-D40. PubMed ID: 31873366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Penalized-likelihood image reconstruction for digital holography.
    Sotthivirat S; Fessler JA
    J Opt Soc Am A Opt Image Sci Vis; 2004 May; 21(5):737-50. PubMed ID: 15139426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iterative phase-retrieval-assisted off-axis terahertz digital holography.
    Zhao Y; Vandenrijt JF; Kirkove M; Georges M
    Appl Opt; 2019 Nov; 58(33):9208-9216. PubMed ID: 31873598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.