These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 30231550)
21. OH-PRED: prediction of protein hydroxylation sites by incorporating adapted normal distribution bi-profile Bayes feature extraction and physicochemical properties of amino acids. Jia CZ; He WY; Yao YH J Biomol Struct Dyn; 2017 Mar; 35(4):829-835. PubMed ID: 26957000 [TBL] [Abstract][Full Text] [Related]
22. A deep learning method to more accurately recall known lysine acetylation sites. Wu M; Yang Y; Wang H; Xu Y BMC Bioinformatics; 2019 Jan; 20(1):49. PubMed ID: 30674277 [TBL] [Abstract][Full Text] [Related]
23. Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model. Ke J; Zhao J; Li H; Yuan L; Dong G; Wang G Comput Biol Med; 2024 May; 174():108330. PubMed ID: 38588617 [TBL] [Abstract][Full Text] [Related]
24. Characterization and Identification of Lysine Succinylation Sites based on Deep Learning Method. Huang KY; Hsu JB; Lee TY Sci Rep; 2019 Nov; 9(1):16175. PubMed ID: 31700141 [TBL] [Abstract][Full Text] [Related]
25. Deep Learning for Fall Detection: Three-Dimensional CNN Combined With LSTM on Video Kinematic Data. Lu N; Wu Y; Feng L; Song J IEEE J Biomed Health Inform; 2019 Jan; 23(1):314-323. PubMed ID: 29994460 [TBL] [Abstract][Full Text] [Related]
26. Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features. Weng SL; Huang KY; Kaunang FJ; Huang CH; Kao HJ; Chang TH; Wang HY; Lu JJ; Lee TY BMC Bioinformatics; 2017 Mar; 18(Suppl 3):66. PubMed ID: 28361707 [TBL] [Abstract][Full Text] [Related]
27. iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC. Jia J; Liu Z; Xiao X; Liu B; Chou KC Oncotarget; 2016 Jun; 7(23):34558-70. PubMed ID: 27153555 [TBL] [Abstract][Full Text] [Related]
28. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif. Hirohara M; Saito Y; Koda Y; Sato K; Sakakibara Y BMC Bioinformatics; 2018 Dec; 19(Suppl 19):526. PubMed ID: 30598075 [TBL] [Abstract][Full Text] [Related]
29. Signal-3L 3.0: Improving Signal Peptide Prediction through Combining Attention Deep Learning with Window-Based Scoring. Zhang WX; Pan X; Shen HB J Chem Inf Model; 2020 Jul; 60(7):3679-3686. PubMed ID: 32501689 [TBL] [Abstract][Full Text] [Related]
30. Deep Neural Network Based Predictions of Protein Interactions Using Primary Sequences. Li H; Gong XJ; Yu H; Zhou C Molecules; 2018 Aug; 23(8):. PubMed ID: 30071670 [TBL] [Abstract][Full Text] [Related]
31. From deep learning to transfer learning for the prediction of skeletal muscle forces. Dao TT Med Biol Eng Comput; 2019 May; 57(5):1049-1058. PubMed ID: 30552553 [TBL] [Abstract][Full Text] [Related]
32. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture. Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635 [TBL] [Abstract][Full Text] [Related]
33. Deep_CNN_LSTM_GO: Protein function prediction from amino-acid sequences. Elhaj-Abdou MEM; El-Dib H; El-Helw A; El-Habrouk M Comput Biol Chem; 2021 Dec; 95():107584. PubMed ID: 34601431 [TBL] [Abstract][Full Text] [Related]
34. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks. Hanson J; Yang Y; Paliwal K; Zhou Y Bioinformatics; 2017 Mar; 33(5):685-692. PubMed ID: 28011771 [TBL] [Abstract][Full Text] [Related]
35. Comprehensive Characterization of Glycosylation and Hydroxylation of Basement Membrane Collagen IV by High-Resolution Mass Spectrometry. Basak T; Vega-Montoto L; Zimmerman LJ; Tabb DL; Hudson BG; Vanacore RM J Proteome Res; 2016 Jan; 15(1):245-58. PubMed ID: 26593852 [TBL] [Abstract][Full Text] [Related]
36. Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites. Chen Z; He N; Huang Y; Qin WT; Liu X; Li L Genomics Proteomics Bioinformatics; 2018 Dec; 16(6):451-459. PubMed ID: 30639696 [TBL] [Abstract][Full Text] [Related]
37. Time Series Multiple Channel Convolutional Neural Network with Attention-Based Long Short-Term Memory for Predicting Bearing Remaining Useful Life. Jiang JR; Lee JE; Zeng YM Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31888110 [TBL] [Abstract][Full Text] [Related]
38. Collagen hydroxylysine glycosylation: non-conventional substrates for atypical glycosyltransferase enzymes. De Giorgi F; Fumagalli M; Scietti L; Forneris F Biochem Soc Trans; 2021 Apr; 49(2):855-866. PubMed ID: 33704379 [TBL] [Abstract][Full Text] [Related]
39. Identification of clathrin proteins by incorporating hyperparameter optimization in deep learning and PSSM profiles. Le NQK; Huynh TT; Yapp EKY; Yeh HY Comput Methods Programs Biomed; 2019 Aug; 177():81-88. PubMed ID: 31319963 [TBL] [Abstract][Full Text] [Related]
40. iSuc-PseAAC: predicting lysine succinylation in proteins by incorporating peptide position-specific propensity. Xu Y; Ding YX; Ding J; Lei YH; Wu LY; Deng NY Sci Rep; 2015 Jun; 5():10184. PubMed ID: 26084794 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]