These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30231566)

  • 21. CO oxidation on nanostructured SnO(x)/Pt(111) surfaces: unique properties of reduced SnO(x).
    Axnanda S; Zhou WP; White MG
    Phys Chem Chem Phys; 2012 Aug; 14(29):10207-14. PubMed ID: 22733161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of SnO2 nanowires by solvent-free method using mesoporous silica template and their gas sensitive properties.
    Zhang H; Tan Z; Xu P; Oh K; Wu R; Shi W; Jiao Z
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11114-8. PubMed ID: 22409067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of SnO2 Nanowires Using Thermal Evaporation of SnO.
    Lin YY; Lin CY; Chen CY; Li YY
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9856-60. PubMed ID: 26682424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sonochemical synthesis of Au nanowires in the III-I oxidation state bridged by 4,4'-dicyanamidobiphenyl and their application as selective CO gas sensors.
    Tabrizi L; Chiniforoshan H
    Dalton Trans; 2015 Feb; 44(5):2488-95. PubMed ID: 25559417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection.
    Li Z; Zhao Q; Fan W; Zhan J
    Nanoscale; 2011 Apr; 3(4):1646-52. PubMed ID: 21279215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance.
    Trung do D; Hoa ND; Tong PV; Duy NV; Dao TD; Chung HV; Nagao T; Hieu NV
    J Hazard Mater; 2014 Jan; 265():124-32. PubMed ID: 24355775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vapor-liquid-solid growth of one-dimensional tin sulfide (SnS) nanostructures with promising field emission behavior.
    Suryawanshi SR; Warule SS; Patil SS; Patil KR; More MA
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):2018-25. PubMed ID: 24432697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flower-like ZnO Nanostructures Local Surface Morphology and Chemistry.
    Kwoka M; Comini E; Zappa D; Szuber J
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transfer Printing Technology as a Straightforward Method to Fabricate Chemical Sensors Based on Tin Dioxide Nanowires.
    Sosada-Ludwikowska F; Wimmer-Teubenbacher R; Sagmeister M; Köck A
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31295935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface properties of SnO
    Kwoka M; Lyson-Sypien B; Comini E; Krzywiecki M; Waczynski K; Szuber J
    Nanotechnology; 2020 Jul; 31(31):315714. PubMed ID: 32050178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gas sensing properties of individual SnO
    Shaposhnik AV; Shaposhnik DA; Turishchev SY; Chuvenkova OA; Ryabtsev SV; Vasiliev AA; Vilanova X; Hernandez-Ramirez F; Morante JR
    Beilstein J Nanotechnol; 2019; 10():1380-1390. PubMed ID: 31355106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and characterization of silver substrates coated with antimony-doped SnO2 thin films for surface plasmon resonance studies.
    Manesse M; Sanjines R; Stambouli V; Jorel C; Pelissier B; Pisarek M; Boukherroub R; Szunerits S
    Langmuir; 2009 Jul; 25(14):8036-41. PubMed ID: 19594181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pure and Highly Nb-Doped Titanium Dioxide Nanotubular Arrays: Characterization of Local Surface Properties.
    Kwoka M; Galstyan V; Comini E; Szuber J
    Nanomaterials (Basel); 2017 Dec; 7(12):. PubMed ID: 29258284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires.
    Wu JM
    Nanotechnology; 2010 Jun; 21(23):235501. PubMed ID: 20463390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-scale synthesis and microstructure of SnO2 nanowires coated with quantum-sized ZnO nanocrystals on a mesh substrate.
    Yu W; Li X; Gao X; Wu F
    J Phys Chem B; 2005 Sep; 109(36):17078-81. PubMed ID: 16853177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dependence of the Nitrogen Dioxide (NO₂) Sensitivity of SnO(x) -Sn/Graphene Gas Sensors on Vacuum Annealing and Ultraviolet (UV) Ozone Exposure.
    Mu H; Wang K; Xie H
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1480-486. PubMed ID: 29688654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hollow CuO nanospheres uniformly anchored on porous Si nanowires: preparation and their potential use as electrochemical sensors.
    Guo Z; Seol ML; Kim MS; Ahn JH; Choi YK; Liu JH; Huang XJ
    Nanoscale; 2012 Dec; 4(23):7525-31. PubMed ID: 23099737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal Calcination-Based Production of SnO₂ Nanopowder: An Analysis of SnO₂ Nanoparticle Characteristics and Antibacterial Activities.
    Al-Hada NM; Kamari HM; Baqer AA; Shaari AH; Saion E
    Nanomaterials (Basel); 2018 Apr; 8(4):. PubMed ID: 29673195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical and Optical Properties of Au-Catalyzed GaAs Nanowires Grown on Si (111) Substrate by Molecular Beam Epitaxy.
    Wang CY; Hong YC; Ko ZJ; Su YW; Huang JH
    Nanoscale Res Lett; 2017 Dec; 12(1):290. PubMed ID: 28438011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphology-controlled synthesis and a comparative study of the physical properties of SnO2 nanostructures: from ultrathin nanowires to ultrawide nanobelts.
    Zhang Z; Gao J; Wong LM; Tao JG; Liao L; Zheng Z; Xing GZ; Peng HY; Yu T; Shen ZX; Huan CH; Wang SJ; Wu T
    Nanotechnology; 2009 Apr; 20(13):135605. PubMed ID: 19420508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.