BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 30231856)

  • 1. Transcriptome dynamics of rooting zone and aboveground parts of cuttings during adventitious root formation in Cryptomeria japonica D. Don.
    Fukuda Y; Hirao T; Mishima K; Ohira M; Hiraoka Y; Takahashi M; Watanabe A
    BMC Plant Biol; 2018 Sep; 18(1):201. PubMed ID: 30231856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L.).
    Stevens ME; Woeste KE; Pijut PM
    Tree Physiol; 2018 Jun; 38(6):877-894. PubMed ID: 29378021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic profiling and discovery of key genes involved in adventitious root formation from green cuttings of highbush blueberry (Vaccinium corymbosum L.).
    An H; Zhang J; Xu F; Jiang S; Zhang X
    BMC Plant Biol; 2020 Apr; 20(1):182. PubMed ID: 32334538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression profiling during adventitious root formation in carnation stem cuttings.
    Villacorta-Martín C; Sánchez-García AB; Villanova J; Cano A; van de Rhee M; de Haan J; Acosta M; Passarinho P; Pérez-Pérez JM
    BMC Genomics; 2015 Oct; 16():789. PubMed ID: 26467528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings.
    Agulló-Antón MÁ; Ferrández-Ayela A; Fernández-García N; Nicolás C; Albacete A; Pérez-Alfocea F; Sánchez-Bravo J; Pérez-Pérez JM; Acosta M
    Physiol Plant; 2014 Mar; 150(3):446-62. PubMed ID: 24117983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and Transcriptomic Changes during the Early Phases of Adventitious Root Formation in Mulberry Stem Hardwood Cuttings.
    Shang C; Yang H; Ma S; Shen Q; Liu L; Hou C; Cao X; Cheng J
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31362363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo sequencing and comparative transcriptome analysis of adventitious root development induced by exogenous indole-3-butyric acid in cuttings of tetraploid black locust.
    Quan J; Meng S; Guo E; Zhang S; Zhao Z; Yang X
    BMC Genomics; 2017 Feb; 18(1):179. PubMed ID: 28209181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.).
    Wei K; Wang LY; Wu LY; Zhang CC; Li HL; Tan LQ; Cao HL; Cheng H
    PLoS One; 2014; 9(9):e107201. PubMed ID: 25216187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis.
    Rasmussen A; Hosseini SA; Hajirezaei MR; Druege U; Geelen D
    J Exp Bot; 2015 Mar; 66(5):1437-52. PubMed ID: 25540438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the Hormone-Regulating Mechanism of Adventitious Root Formation in Softwood Cuttings of
    Tian Y; Yang W; Wan S; Fang S
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iTRAQ-Based Proteomic Analysis Reveals Potential Regulation Networks of IBA-Induced Adventitious Root Formation in Apple.
    Lei C; Fan S; Li K; Meng Y; Mao J; Han M; Zhao C; Bao L; Zhang D
    Int J Mol Sci; 2018 Feb; 19(3):. PubMed ID: 29495482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microarray analysis revealed upregulation of nitrate reductase in juvenile cuttings of Eucalyptus grandis, which correlated with increased nitric oxide production and adventitious root formation.
    Abu-Abied M; Szwerdszarf D; Mordehaev I; Levy A; Stelmakh OR; Belausov E; Yaniv Y; Uliel S; Katzenellenbogen M; Riov J; Ophir R; Sadot E
    Plant J; 2012 Sep; 71(5):787-99. PubMed ID: 22519851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation.
    Kim S; Nie H; Jun B; Kim J; Lee J; Kim S; Kim E; Kim S
    Genes Genomics; 2020 May; 42(5):581-596. PubMed ID: 32240514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated transcriptome and hormonal analysis of naphthalene acetic acid-induced adventitious root formation of tea cuttings (Camellia sinensis).
    Wang Y; Pang D; Ruan L; Liang J; Zhang Q; Qian Y; Zhang Y; Bai P; Wu L; Cheng H; Cui Q; Wang L; Wei K
    BMC Plant Biol; 2022 Jul; 22(1):319. PubMed ID: 35787241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Integrated Transcriptome and Proteome Analysis Reveals Putative Regulators of Adventitious Root Formation in
    Wang Z; Hua J; Yin Y; Gu C; Yu C; Shi Q; Guo J; Xuan L; Yu F
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30862088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome and proteome profiling of adventitious root development in hybrid larch (Larix kaempferi × Larix olgensis).
    Han H; Sun X; Xie Y; Feng J; Zhang S
    BMC Plant Biol; 2014 Nov; 14():305. PubMed ID: 25425065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.
    Tombesi S; Palliotti A; Poni S; Farinelli D
    Front Plant Sci; 2015; 6():973. PubMed ID: 26635821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adventitious root formation is dynamically regulated by various hormones in leaf-vegetable sweetpotato cuttings.
    Pan R; Liu Y; Buitrago S; Jiang W; Gao H; Han H; Wu C; Wang Y; Zhang W; Yang X
    J Plant Physiol; 2020 Oct; 253():153267. PubMed ID: 32858442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adventitious root formation in tree species: involvement of transcription factors.
    Legué V; Rigal A; Bhalerao RP
    Physiol Plant; 2014 Jun; 151(2):192-8. PubMed ID: 24666319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization.
    Wei K; Wang L; Cheng H; Zhang C; Ma C; Zhang L; Gong W; Wu L
    Gene; 2013 Feb; 514(2):91-8. PubMed ID: 23201417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.