BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30232039)

  • 1. Improved methods for MRI-compatible implants in nonhuman primates.
    Ortiz-Rios M; Haag M; Balezeau F; Frey S; Thiele A; Murphy K; Schmid MC
    J Neurosci Methods; 2018 Oct; 308():377-389. PubMed ID: 30232039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved methods for acrylic-free implants in nonhuman primates for neuroscience research.
    Overton JA; Cooke DF; Goldring AB; Lucero SA; Weatherford C; Recanzone GH
    J Neurophysiol; 2017 Dec; 118(6):3252-3270. PubMed ID: 28855286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Customizable cap implants for neurophysiological experimentation.
    Blonde JD; Roussy M; Luna R; Mahmoudian B; Gulli RA; Barker KC; Lau JC; Martinez-Trujillo JC
    J Neurosci Methods; 2018 Jul; 304():103-117. PubMed ID: 29694848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of titanium implants and prosthodontic techniques in the preparation of non-human primates for long-term neuronal recording studies.
    Betelak KF; Margiotti EA; Wohlford ME; Suzuki DA
    J Neurosci Methods; 2001 Nov; 112(1):9-20. PubMed ID: 11640953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Titanium and hydroxyapatite coating of polyetheretherketone and carbon fiber-reinforced polyetheretherketone: A pilot study in sheep.
    Stübinger S; Drechsler A; Bürki A; Klein K; Kronen P; von Rechenberg B
    J Biomed Mater Res B Appl Biomater; 2016 Aug; 104(6):1182-91. PubMed ID: 26097161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Custom-fit radiolucent cranial implants for neurophysiological recording and stimulation.
    Mulliken GH; Bichot NP; Ghadooshahy A; Sharma J; Kornblith S; Philcock M; Desimone R
    J Neurosci Methods; 2015 Feb; 241():146-54. PubMed ID: 25542350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface roughness enhances the osseointegration of titanium headposts in non-human primates.
    Hacking SA; Boyraz P; Powers BM; Sen-Gupta E; Kucharski W; Brown CA; Cook EP
    J Neurosci Methods; 2012 Nov; 211(2):237-44. PubMed ID: 22975472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Neural Implant Design Toolbox for Nonhuman Primates.
    Iritani R; Belloir T; Griggs DJ; Ip Z; Anderson Z; Yazdan-Shahmorad A
    J Vis Exp; 2024 Feb; (204):. PubMed ID: 38407257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle.
    Guillot R; Pignot-Paintrand I; Lavaud J; Decambron A; Bourgeois E; Josserand V; Logeart-Avramoglou D; Viguier E; Picart C
    Acta Biomater; 2016 May; 36():310-22. PubMed ID: 26965394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactivity and Osseointegration of PEEK Are Inferior to Those of Titanium: A Systematic Review.
    Najeeb S; Bds ZK; Bds SZ; Bds MS
    J Oral Implantol; 2016 Dec; 42(6):512-516. PubMed ID: 27560166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating Osseointegration Into a Deeply Porous Titanium Scaffold: A Biomechanical Comparison With PEEK and Allograft.
    Guyer RD; Abitbol JJ; Ohnmeiss DD; Yao C
    Spine (Phila Pa 1976); 2016 Oct; 41(19):E1146-E1150. PubMed ID: 27135643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological evaluation and finite-element modeling of porous poly(para-phenylene) for orthopaedic implants.
    Ahn H; Patel RR; Hoyt AJ; Lin ASP; Torstrick FB; Guldberg RE; Frick CP; Carpenter RD; Yakacki CM; Willett NJ
    Acta Biomater; 2018 May; 72():352-361. PubMed ID: 29563069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The therapeutic effect of patient-specific implants in cranioplasty.
    Zegers T; Ter Laak-Poort M; Koper D; Lethaus B; Kessler P
    J Craniomaxillofac Surg; 2017 Jan; 45(1):82-86. PubMed ID: 27916400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printing and modelling of customized implants and surgical guides for non-human primates.
    Chen X; Possel JK; Wacongne C; van Ham AF; Klink PC; Roelfsema PR
    J Neurosci Methods; 2017 Jul; 286():38-55. PubMed ID: 28512008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone.
    Johansson P; Jimbo R; Naito Y; Kjellin P; Currie F; Wennerberg A
    Int J Nanomedicine; 2016; 11():1435-42. PubMed ID: 27103801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold-spray coating of hydroxyapatite on a three-dimensional polyetheretherketone implant and its biocompatibility evaluated by in vitro and in vivo minipig model.
    Lee JH; Jang HL; Lee KM; Baek HR; Jin K; Noh JH
    J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):647-657. PubMed ID: 26669279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a novel frameless skull-mounted ball-joint guide array for use in image-guided neurosurgery.
    Sudhakar V; Mahmoodi A; Bringas JR; Naidoo J; Kells A; Samaranch L; Fiandaca MS; Bankiewicz KS
    J Neurosurg; 2019 Feb; 132(2):595-604. PubMed ID: 30771782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyether Ether Ketone Cranioplasties Are Permeable to Diagnostic Ultrasound.
    Mursch K; Behnke-Mursch J
    World Neurosurg; 2018 Sep; 117():142-143. PubMed ID: 29920388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low profile halo head fixation in non-human primates.
    Azimi K; Prescott IA; Marino RA; Winterborn A; Levy R
    J Neurosci Methods; 2016 Aug; 268():23-30. PubMed ID: 27132241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced bone healing around nanohydroxyapatite-coated polyetheretherketone implants: An experimental study in rabbit bone.
    Barkarmo S; Andersson M; Currie F; Kjellin P; Jimbo R; Johansson CB; Stenport V
    J Biomater Appl; 2014 Nov; 29(5):737-47. PubMed ID: 25015653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.