BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30232256)

  • 1. Myeloid-derived suppressor cells inhibit T cell activation through nitrating LCK in mouse cancers.
    Feng S; Cheng X; Zhang L; Lu X; Chaudhary S; Teng R; Frederickson C; Champion MM; Zhao R; Cheng L; Gong Y; Deng H; Lu X
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):10094-10099. PubMed ID: 30232256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LILRB3 Supports Immunosuppressive Activity of Myeloid Cells and Tumor Development.
    Huang R; Liu X; Kim J; Deng H; Deng M; Gui X; Chen H; Wu G; Xiong W; Xie J; Lewis C; Homsi J; Yang X; Zhang C; He Y; Lou Q; Smith C; John S; Zhang N; An Z; Zhang CC
    Cancer Immunol Res; 2024 Mar; 12(3):350-362. PubMed ID: 38113030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent Detection of Peroxynitrite Produced by Myeloid-Derived Suppressor Cells in Cancer and Inhibition by Dasatinib.
    Carlson EJ; Savardekar H; Hu X; Lapurga G; Johnson C; Sun SH; Carson WE; Peterson BR
    ACS Pharmacol Transl Sci; 2023 May; 6(5):738-747. PubMed ID: 37200815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction to: A Novel Biallelic LCK Variant Resulting in Profound T-Cell Immune Deficiency and Review of the Literature.
    Lanz AL; Erdem S; Ozcan A; Ceylaner G; Cansever M; Ceylaner S; Conca R; Magg T; Acuto O; Latour S; Klein C; Patiroglu T; Unal E; Eken A; Hauck F
    J Clin Immunol; 2024 Jan; 44(1):41. PubMed ID: 38225415
    [No Abstract]   [Full Text] [Related]  

  • 5. Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma.
    Huber V; Vallacchi V; Fleming V; Hu X; Cova A; Dugo M; Shahaj E; Sulsenti R; Vergani E; Filipazzi P; De Laurentiis A; Lalli L; Di Guardo L; Patuzzo R; Vergani B; Casiraghi E; Cossa M; Gualeni A; Bollati V; Arienti F; De Braud F; Mariani L; Villa A; Altevogt P; Umansky V; Rodolfo M; Rivoltini L
    J Clin Invest; 2018 Dec; 128(12):5505-5516. PubMed ID: 30260323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-Derived cGAMP Triggers a STING-Mediated Interferon Response in Non-tumor Cells to Activate the NK Cell Response.
    Marcus A; Mao AJ; Lensink-Vasan M; Wang L; Vance RE; Raulet DH
    Immunity; 2018 Oct; 49(4):754-763.e4. PubMed ID: 30332631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entinostat Converts Immune-Resistant Breast and Pancreatic Cancers into Checkpoint-Responsive Tumors by Reprogramming Tumor-Infiltrating MDSCs.
    Christmas BJ; Rafie CI; Hopkins AC; Scott BA; Ma HS; Cruz KA; Woolman S; Armstrong TD; Connolly RM; Azad NA; Jaffee EM; Roussos Torres ET
    Cancer Immunol Res; 2018 Dec; 6(12):1561-1577. PubMed ID: 30341213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma.
    Sade-Feldman M; Yizhak K; Bjorgaard SL; Ray JP; de Boer CG; Jenkins RW; Lieb DJ; Chen JH; Frederick DT; Barzily-Rokni M; Freeman SS; Reuben A; Hoover PJ; Villani AC; Ivanova E; Portell A; Lizotte PH; Aref AR; Eliane JP; Hammond MR; Vitzthum H; Blackmon SM; Li B; Gopalakrishnan V; Reddy SM; Cooper ZA; Paweletz CP; Barbie DA; Stemmer-Rachamimov A; Flaherty KT; Wargo JA; Boland GM; Sullivan RJ; Getz G; Hacohen N
    Cell; 2018 Nov; 175(4):998-1013.e20. PubMed ID: 30388456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STAT3 Inhibition Combined with CpG Immunostimulation Activates Antitumor Immunity to Eradicate Genetically Distinct Castration-Resistant Prostate Cancers.
    Moreira D; Adamus T; Zhao X; Su YL; Zhang Z; White SV; Swiderski P; Lu X; DePinho RA; Pal SK; Kortylewski M
    Clin Cancer Res; 2018 Dec; 24(23):5948-5962. PubMed ID: 30337279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity.
    Chen HM; van der Touw W; Wang YS; Kang K; Mai S; Zhang J; Alsina-Beauchamp D; Duty JA; Mungamuri SK; Zhang B; Moran T; Flavell R; Aaronson S; Hu HM; Arase H; Ramanathan S; Flores R; Pan PY; Chen SH
    J Clin Invest; 2018 Dec; 128(12):5647-5662. PubMed ID: 30352428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization.
    Sanmamed MF; Chen L
    Cell; 2018 Oct; 175(2):313-326. PubMed ID: 30290139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA.
    Paulson KG; Voillet V; McAfee MS; Hunter DS; Wagener FD; Perdicchio M; Valente WJ; Koelle SJ; Church CD; Vandeven N; Thomas H; Colunga AG; Iyer JG; Yee C; Kulikauskas R; Koelle DM; Pierce RH; Bielas JH; Greenberg PD; Bhatia S; Gottardo R; Nghiem P; Chapuis AG
    Nat Commun; 2018 Sep; 9(1):3868. PubMed ID: 30250229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential regulation of PD-L1 expression by immune and tumor cells in NSCLC and the response to treatment with atezolizumab (anti-PD-L1).
    Kowanetz M; Zou W; Gettinger SN; Koeppen H; Kockx M; Schmid P; Kadel EE; Wistuba I; Chaft J; Rizvi NA; Spigel DR; Spira A; Hirsch FR; Cohen V; Smith D; Boyd Z; Miley N; Flynn S; Leveque V; Shames DS; Ballinger M; Mocci S; Shankar G; Funke R; Hampton G; Sandler A; Amler L; Mellman I; Chen DS; Hegde PS
    Proc Natl Acad Sci U S A; 2018 Oct; 115(43):E10119-E10126. PubMed ID: 30297397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FcγR interaction is not required for effective anti-PD-L1 immunotherapy but can add additional benefit depending on the tumor model.
    Sow HS; Benonisson H; Breukel C; Visser R; Verhagen OJHM; Bentlage AEH; Brouwers C; Claassens JWC; Linssen MM; Camps M; van Hall T; Ossendorp F; Fransen MF; Vidarsson G; Verbeek JS
    Int J Cancer; 2019 Jan; 144(2):345-354. PubMed ID: 30259976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining STING-based neoantigen-targeted vaccine with checkpoint modulators enhances antitumor immunity in murine pancreatic cancer.
    Kinkead HL; Hopkins A; Lutz E; Wu AA; Yarchoan M; Cruz K; Woolman S; Vithayathil T; Glickman LH; Ndubaku CO; McWhirter SM; Dubensky TW; Armstrong TD; Jaffee EM; Zaidi N
    JCI Insight; 2018 Oct; 3(20):. PubMed ID: 30333318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade.
    Grauers Wiktorin H; Nilsson MS; Kiffin R; Sander FE; Lenox B; Rydström A; Hellstrand K; Martner A
    Cancer Immunol Immunother; 2019 Feb; 68(2):163-174. PubMed ID: 30315349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Anti-lymphoma Activity of CAR19-iNKT Cells Underpinned by Dual CD19 and CD1d Targeting.
    Rotolo A; Caputo VS; Holubova M; Baxan N; Dubois O; Chaudhry MS; Xiao X; Goudevenou K; Pitcher DS; Petevi K; Kachramanoglou C; Iles S; Naresh K; Maher J; Karadimitris A
    Cancer Cell; 2018 Oct; 34(4):596-610.e11. PubMed ID: 30300581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma.
    Amaria RN; Reddy SM; Tawbi HA; Davies MA; Ross MI; Glitza IC; Cormier JN; Lewis C; Hwu WJ; Hanna E; Diab A; Wong MK; Royal R; Gross N; Weber R; Lai SY; Ehlers R; Blando J; Milton DR; Woodman S; Kageyama R; Wells DK; Hwu P; Patel SP; Lucci A; Hessel A; Lee JE; Gershenwald J; Simpson L; Burton EM; Posada L; Haydu L; Wang L; Zhang S; Lazar AJ; Hudgens CW; Gopalakrishnan V; Reuben A; Andrews MC; Spencer CN; Prieto V; Sharma P; Allison J; Tetzlaff MT; Wargo JA
    Nat Med; 2018 Nov; 24(11):1649-1654. PubMed ID: 30297909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune Checkpoint Inhibition Overcomes ADCP-Induced Immunosuppression by Macrophages.
    Su S; Zhao J; Xing Y; Zhang X; Liu J; Ouyang Q; Chen J; Su F; Liu Q; Song E
    Cell; 2018 Oct; 175(2):442-457.e23. PubMed ID: 30290143
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.