BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30232292)

  • 1. MicroRNA-377 Inhibits Atherosclerosis by Regulating Triglyceride Metabolism Through the DNA Methyltransferase 1 in Apolipoprotein E-Knockout Mice.
    Chen LY; Xia XD; Zhao ZW; Gong D; Ma XF; Yu XH; Zhang Q; Wang SQ; Dai XY; Zheng XL; Zhang DW; Yin WD; Tang CK
    Circ J; 2018 Oct; 82(11):2861-2871. PubMed ID: 30232292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA-182 Promotes Lipoprotein Lipase Expression and Atherogenesisby Targeting Histone Deacetylase 9 in Apolipoprotein E-Knockout Mice.
    Cheng HP; Gong D; Zhao ZW; He PP; Yu XH; Ye Q; Huang C; Zhang X; Chen LY; Xie W; Zhang M; Li L; Xia XD; Ouyang XP; Tan YL; Wang ZB; Tian GP; Zheng XL; Yin WD; Tang CK
    Circ J; 2017 Dec; 82(1):28-38. PubMed ID: 28855441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of the Mir-106b~ 25 MicroRNA cluster attenuates atherosclerosis in Apolipoprotein E knockout mice.
    Semo J; Chernin G; Jonas M; Shimoni S; George J
    Lipids Health Dis; 2019 Dec; 18(1):208. PubMed ID: 31796057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA-27 Prevents Atherosclerosis by Suppressing Lipoprotein Lipase-Induced Lipid Accumulation and Inflammatory Response in Apolipoprotein E Knockout Mice.
    Xie W; Li L; Zhang M; Cheng HP; Gong D; Lv YC; Yao F; He PP; Ouyang XP; Lan G; Liu D; Zhao ZW; Tan YL; Zheng XL; Yin WD; Tang CK
    PLoS One; 2016; 11(6):e0157085. PubMed ID: 27257686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1.
    Zhang L; Cheng H; Yue Y; Li S; Zhang D; He R
    Cardiovasc Pathol; 2018; 33():6-15. PubMed ID: 29268138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. circRNA‑0006896‑miR1264‑DNMT1 axis plays an important role in carotid plaque destabilization by regulating the behavior of endothelial cells in atherosclerosis.
    Wen Y; Chun Y; Lian ZQ; Yong ZW; Lan YM; Huan L; Xi CY; Juan LS; Qing ZW; Jia C; Ji ZH
    Mol Med Rep; 2021 May; 23(5):. PubMed ID: 33649864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apolipoprotein C-III inhibits triglyceride hydrolysis by GPIHBP1-bound LPL.
    Larsson M; Allan CM; Jung RS; Heizer PJ; Beigneux AP; Young SG; Fong LG
    J Lipid Res; 2017 Sep; 58(9):1893-1902. PubMed ID: 28694296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artesunate inhibits atherosclerosis by upregulating vascular smooth muscle cells-derived LPL expression via the KLF2/NRF2/TCF7L2 pathway.
    He LH; Gao JH; Yu XH; Wen FJ; Luo JJ; Qin YS; Chen MX; Zhang DW; Wang ZB; Tang CK
    Eur J Pharmacol; 2020 Oct; 884():173408. PubMed ID: 32739175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular genetic testing and measurement of levels of GPIHBP1 autoantibodies in patients with severe hypertriglyceridemia: The importance of identifying the underlying cause of hypertriglyceridemia.
    Strøm TB; Tveita AA; Bogsrud MP; Leren TP
    J Clin Lipidol; 2024; 18(1):e80-e89. PubMed ID: 37981531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries.
    Davies BS; Beigneux AP; Barnes RH; Tu Y; Gin P; Weinstein MM; Nobumori C; Nyrén R; Goldberg I; Olivecrona G; Bensadoun A; Young SG; Fong LG
    Cell Metab; 2010 Jul; 12(1):42-52. PubMed ID: 20620994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of miR-467b on lipoprotein lipase (LPL) expression, pro-inflammatory cytokine, lipid levels and atherosclerotic lesions in apolipoprotein E knockout mice.
    Tian GP; Tang YY; He PP; Lv YC; Ouyang XP; Zhao GJ; Tang SL; Wu JF; Wang JL; Peng J; Zhang M; Li Y; Cayabyab FS; Zheng XL; Zhang DW; Yin WD; Tang CK
    Biochem Biophys Res Commun; 2014 Jan; 443(2):428-34. PubMed ID: 24309104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPIHBP1 and Plasma Triglyceride Metabolism.
    Fong LG; Young SG; Beigneux AP; Bensadoun A; Oberer M; Jiang H; Ploug M
    Trends Endocrinol Metab; 2016 Jul; 27(7):455-469. PubMed ID: 27185325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-134 Promotes the Development of Atherosclerosis Via the ANGPTL4/LPL Pathway in Apolipoprotein E Knockout Mice.
    Ye Q; Tian GP; Cheng HP; Zhang X; Ou X; Yu XH; Tan RQ; Yang FY; Gong D; Huang C; Pan YJ; Zhang J; Chen LY; Zhao ZW; Xie W; Li L; Zhang M; Xia XD; Zheng XL; Tang CK
    J Atheroscler Thromb; 2018 Mar; 25(3):244-253. PubMed ID: 28867683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA-590 Inhibits Lipoprotein Lipase Expression and Prevents Atherosclerosis in apoE Knockout Mice.
    He PP; OuYang XP; Li Y; Lv YC; Wang ZB; Yao F; Xie W; Tan YL; Li L; Zhang M; Lan G; Gong D; Cheng HP; Zhong HJ; Liu D; Huang C; Li ZX; Zheng XL; Yin WD; Tang CK
    PLoS One; 2015; 10(9):e0138788. PubMed ID: 26397958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 and the intravascular processing of triglyceride-rich lipoproteins.
    Adeyo O; Goulbourne CN; Bensadoun A; Beigneux AP; Fong LG; Young SG
    J Intern Med; 2012 Dec; 272(6):528-40. PubMed ID: 23020258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-205-5p Promotes Unstable Atherosclerotic Plaque Formation In Vivo.
    Meng X; Yin J; Yu X; Guo Y
    Cardiovasc Drugs Ther; 2020 Feb; 34(1):25-39. PubMed ID: 32034643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lipoprotein lipase-GPI-anchored high-density lipoprotein-binding protein 1 fusion lowers triglycerides in mice: Implications for managing familial chylomicronemia syndrome.
    Nimonkar AV; Weldon S; Godbout K; Panza D; Hanrahan S; Cubbon R; Xu F; Trauger JW; Gao J; Voznesensky A
    J Biol Chem; 2020 Mar; 295(10):2900-2912. PubMed ID: 31645434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peach Kernel Oil Downregulates Expression of Tissue Factor and Reduces Atherosclerosis in ApoE knockout Mice.
    Hao E; Pang G; Du Z; Lai YH; Chen JR; Xie J; Zhou K; Hou X; Hsiao CD; Deng J
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipoprotein lipase transporter GPIHBP1 and triglyceride-rich lipoprotein metabolism.
    Liu C; Li L; Guo D; Lv Y; Zheng X; Mo Z; Xie W
    Clin Chim Acta; 2018 Dec; 487():33-40. PubMed ID: 30218660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association between skeletal muscle mass and serum concentrations of lipoprotein lipase, GPIHBP1, and hepatic triglyceride lipase in young Japanese men.
    Matsumoto R; Tsunekawa K; Shoho Y; Yanagawa Y; Kotajima N; Matsumoto S; Araki O; Kimura T; Nakajima K; Murakami M
    Lipids Health Dis; 2019 Apr; 18(1):84. PubMed ID: 30947712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.