These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 30232427)

  • 21. Multi-component superstructures self-assembled from nanocrystal building blocks.
    Tan R; Zhu H; Cao C; Chen O
    Nanoscale; 2016 May; 8(19):9944-61. PubMed ID: 27136751
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of the Metallic Crystalline Structure on the Properties of Nanocrystals and Their Mesoscopic Assemblies.
    Pileni MP
    Acc Chem Res; 2017 Aug; 50(8):1946-1955. PubMed ID: 28726381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-assembly of colloidal one-dimensional nanocrystals.
    Zhang SY; Regulacio MD; Han MY
    Chem Soc Rev; 2014 Apr; 43(7):2301-23. PubMed ID: 24413386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural Diversity in Dimension-Controlled Assemblies of Tetrahedral Gold Nanocrystals.
    Wang Y; Chen J; Zhong Y; Jeong S; Li R; Ye X
    J Am Chem Soc; 2022 Aug; 144(30):13538-13546. PubMed ID: 35863043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials.
    Boles MA; Engel M; Talapin DV
    Chem Rev; 2016 Sep; 116(18):11220-89. PubMed ID: 27552640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films.
    Urban JJ; Talapin DV; Shevchenko EV; Murray CB
    J Am Chem Soc; 2006 Mar; 128(10):3248-55. PubMed ID: 16522106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Competing Interactions between Various Entropic Forces toward Assembly of Pt3Ni Octahedra into a Body-Centered Cubic Superlattice.
    Li R; Zhang J; Tan R; Gerdes F; Luo Z; Xu H; Hollingsworth JA; Klinke C; Chen O; Wang Z
    Nano Lett; 2016 Apr; 16(4):2792-9. PubMed ID: 26977777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversible solvent vapor-mediated phase changes in nanocrystal superlattices.
    Goodfellow BW; Korgel BA
    ACS Nano; 2011 Apr; 5(4):2419-24. PubMed ID: 21517119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices.
    Paik T; Yun H; Fleury B; Hong SH; Jo PS; Wu Y; Oh SJ; Cargnello M; Yang H; Murray CB; Kagan CR
    Nano Lett; 2017 Mar; 17(3):1387-1394. PubMed ID: 28146634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shape-directed self-assembly of nanodumbbells into superstructure polymorphs.
    Liu Y; Deng K; Yang J; Wu X; Fan X; Tang M; Quan Z
    Chem Sci; 2020 Mar; 11(16):4065-4073. PubMed ID: 34122872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable assembly of truncated nanocubes by evaporation-driven poor-solvent enrichment.
    Lv ZP; Kapuscinski M; Bergström L
    Nat Commun; 2019 Sep; 10(1):4228. PubMed ID: 31530817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pseudomorphic amorphization of three-dimensional superlattices through morphological transformation of nanocrystal building blocks.
    Saruyama M; Takahata R; Sato R; Matsumoto K; Zhu L; Nakanishi Y; Shibata M; Nakatani T; Fujinami S; Miyazaki T; Takenaka M; Teranishi T
    Chem Sci; 2024 Feb; 15(7):2425-2432. PubMed ID: 38362422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembly of colloidal hexagonal bipyramid- and bifrustum-shaped ZnS nanocrystals into two-dimensional superstructures.
    van der Stam W; Gantapara AP; Akkerman QA; Soligno G; Meeldijk JD; van Roij R; Dijkstra M; de Mello Donega C
    Nano Lett; 2014 Feb; 14(2):1032-7. PubMed ID: 24433112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic Transformation of High-Architectural Nanocrystal Superlattices upon Solvent Molecule Exposure.
    Nagaoka Y; Schneider J; Jin N; Cai T; Liu Y; Wang Z; Li R; Kim KS; Chen O
    J Am Chem Soc; 2024 May; 146(19):13093-13104. PubMed ID: 38690763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembly of tetrahedral CdSe nanocrystals: effective "patchiness" via anisotropic steric interaction.
    Boles MA; Talapin DV
    J Am Chem Soc; 2014 Apr; 136(16):5868-71. PubMed ID: 24655011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of diverse supercrystals from self-assembly of a variety of polyhedral gold nanocrystals.
    Liao CW; Lin YS; Chanda K; Song YF; Huang MH
    J Am Chem Soc; 2013 Feb; 135(7):2684-93. PubMed ID: 23394452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of ordering in single-component and binary nanocrystal superlattices by analysis of their autocorrelation functions.
    Pichler S; Bodnarchuk MI; Kovalenko MV; Yarema M; Springholz G; Talapin DV; Heiss W
    ACS Nano; 2011 Mar; 5(3):1703-12. PubMed ID: 21370900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-Assembly of Two-Dimensional Perovskite Nanosheet Building Blocks into Ordered Ruddlesden-Popper Perovskite Phase.
    Liu Y; Siron M; Lu D; Yang J; Dos Reis R; Cui F; Gao M; Lai M; Lin J; Kong Q; Lei T; Kang J; Jin J; Ciston J; Yang P
    J Am Chem Soc; 2019 Aug; 141(33):13028-13032. PubMed ID: 31386354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.
    Paik T; Diroll BT; Kagan CR; Murray CB
    J Am Chem Soc; 2015 May; 137(20):6662-9. PubMed ID: 25927895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals.
    Geuchies JJ; van Overbeek C; Evers WH; Goris B; de Backer A; Gantapara AP; Rabouw FT; Hilhorst J; Peters JL; Konovalov O; Petukhov AV; Dijkstra M; Siebbeles LDA; van Aert S; Bals S; Vanmaekelbergh D
    Nat Mater; 2016 Dec; 15(12):1248-1254. PubMed ID: 27595349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.