These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30232457)

  • 1. Transience of the North American High Plains landscape and its impact on surface water.
    Willett SD; McCoy SW; Beeson HW
    Nature; 2018 Sep; 561(7724):528-532. PubMed ID: 30232457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotopic insights on continental water sources and transport in the mountains and plains of Southern South America.
    Poca M; Nosetto MD; Ballesteros S; Castellanos G; Jobbágy EG
    Isotopes Environ Health Stud; 2020; 56(5-6):586-605. PubMed ID: 32940532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin.
    Schaefer MV; Ying SC; Benner SG; Duan Y; Wang Y; Fendorf S
    Environ Sci Technol; 2016 Apr; 50(7):3521-9. PubMed ID: 26788939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas.
    Murgulet D; Murgulet V; Spalt N; Douglas A; Hay RG
    Sci Total Environ; 2016 Dec; 572():595-607. PubMed ID: 27620959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology.
    Last WM; Ginn FM
    Saline Syst; 2005 Nov; 1():10. PubMed ID: 16297237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innovative environmental tracer techniques for evaluating sources of spring discharge from a carbonate aquifer bisected by a river.
    Heilweil VM; Sweetkind DS; Gerner SJ
    Ground Water; 2014; 52(1):71-83. PubMed ID: 23425448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Groundwater declines are linked to changes in Great Plains stream fish assemblages.
    Perkin JS; Gido KB; Falke JA; Fausch KD; Crockett H; Johnson ER; Sanderson J
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7373-7378. PubMed ID: 28652354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geochemical Signature of Natural Water Recharge in the Jungar Basin and Its Response to Climate.
    Zhu B; Yu J; Rioual P
    Water Environ Res; 2016 Jan; 88(1):79-86. PubMed ID: 26803030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape.
    Jobbágy EG; Nosetto MD; Villagra PE; Jackson RB
    Ecol Appl; 2011 Apr; 21(3):678-94. PubMed ID: 21639036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Relationship between groundwater quality index of nutrition element and organic matter in riparian zone and water quality in river].
    Hua-Shan X; Tong-Qian Z; Hong-Q M; Zong-Xue X; Chao-Hon M
    Huan Jing Ke Xue; 2011 Apr; 32(4):955-62. PubMed ID: 21717732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrological cycle.
    Gonçalves HC; Mercante MA; Santos ET
    Braz J Biol; 2011 Apr; 71(1 Suppl 1):241-53. PubMed ID: 21537597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroclimate-driven changes in the landscape structure of the terminal lakes and wetlands of the China's Heihe River Basin.
    Xiao S; Xiao H; Peng X; Song X
    Environ Monit Assess; 2015 Jan; 187(1):4091. PubMed ID: 25427825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimates of long-term water total phosphorus (TP) concentrations in three large shallow lakes in the Yangtze River basin, China.
    Wu P; Qin B; Yu G
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4938-48. PubMed ID: 26549710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China.
    Gao JH; Jia J; Kettner AJ; Xing F; Wang YP; Xu XN; Yang Y; Zou XQ; Gao S; Qi S; Liao F
    Sci Total Environ; 2014 May; 481():542-53. PubMed ID: 24631617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of vegetation buffers surrounding playa wetlands at contaminant and sediment amelioration.
    Haukos DA; Johnson LA; Smith LM; McMurry ST
    J Environ Manage; 2016 Oct; 181():552-562. PubMed ID: 27423768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh.
    Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC
    Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global patterns of groundwater table depth.
    Fan Y; Li H; Miguez-Macho G
    Science; 2013 Feb; 339(6122):940-3. PubMed ID: 23430651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Hydrologic processes of the different landscape zones in Fenhe River headwater catchment].
    Yang YG; Li CM; Qin ZD; Zou SB
    Huan Jing Ke Xue; 2014 Jun; 35(6):2108-13. PubMed ID: 25158484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina).
    Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS
    Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.