BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 30232463)

  • 1. Correction: Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia.
    Degryse S; de Bock CE; Demeyer S; Govaerts I; Bornschein S; Verbeke D; Jacobs K; Binos S; Skerrett-Byrne DA; Murray HC; Verrills NM; Van Vlierberghe P; Cools J; Dun MD
    Leukemia; 2018 Dec; 32(12):2731. PubMed ID: 30232463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia.
    Degryse S; de Bock CE; Demeyer S; Govaerts I; Bornschein S; Verbeke D; Jacobs K; Binos S; Skerrett-Byrne DA; Murray HC; Verrills NM; Van Vlierberghe P; Cools J; Dun MD
    Leukemia; 2018 Mar; 32(3):788-800. PubMed ID: 28852199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia.
    Bodaar K; Yamagata N; Barthe A; Landrigan J; Chonghaile TN; Burns M; Stevenson KE; Devidas M; Loh ML; Hunger SP; Wood B; Silverman LB; Teachey DT; Meijerink JP; Letai A; Gutierrez A
    Leukemia; 2022 Jun; 36(6):1499-1507. PubMed ID: 35411095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study.
    Li Y; Buijs-Gladdines JG; Canté-Barrett K; Stubbs AP; Vroegindeweij EM; Smits WK; van Marion R; Dinjens WN; Horstmann M; Kuiper RP; Buijsman RC; Zaman GJ; van der Spek PJ; Pieters R; Meijerink JP
    PLoS Med; 2016 Dec; 13(12):e1002200. PubMed ID: 27997540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers.
    Jeong EG; Kim MS; Nam HK; Min CK; Lee S; Chung YJ; Yoo NJ; Lee SH
    Clin Cancer Res; 2008 Jun; 14(12):3716-21. PubMed ID: 18559588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia.
    Canté-Barrett K; Spijkers-Hagelstein JA; Buijs-Gladdines JG; Uitdehaag JC; Smits WK; van der Zwet J; Buijsman RC; Zaman GJ; Pieters R; Meijerink JP
    Leukemia; 2016 Sep; 30(9):1832-43. PubMed ID: 27174491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based design of specific inhibitors of Janus kinase 3 as apoptosis-inducing antileukemic agents.
    Sudbeck EA; Liu XP; Narla RK; Mahajan S; Ghosh S; Mao C; Uckun FM
    Clin Cancer Res; 1999 Jun; 5(6):1569-82. PubMed ID: 10389946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors.
    Haan C; Rolvering C; Raulf F; Kapp M; Drückes P; Thoma G; Behrmann I; Zerwes HG
    Chem Biol; 2011 Mar; 18(3):314-23. PubMed ID: 21439476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of mutant alleles of JAK3 in pediatric patients with acute lymphoblastic leukemia.
    Yin C; Sandoval C; Baeg GH
    Leuk Lymphoma; 2015 May; 56(5):1502-6. PubMed ID: 25146434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. JAK3, STAT, and MAPK signaling pathways as novel molecular targets for the tyrphostin AG-490 regulation of IL-2-mediated T cell response.
    Wang LH; Kirken RA; Erwin RA; Yu CR; Farrar WL
    J Immunol; 1999 Apr; 162(7):3897-904. PubMed ID: 10201908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of JAK3 expression and activation in human B cells and B cell malignancies.
    Tortolani PJ; Lal BK; Riva A; Johnston JA; Chen YQ; Reaman GH; Beckwith M; Longo D; Ortaldo JR; Bhatia K; McGrath I; Kehrl J; Tuscano J; McVicar DW; O'Shea JJ
    J Immunol; 1995 Dec; 155(11):5220-6. PubMed ID: 7594533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of JAK3, but not JAK1, is critical for IL-2-induced proliferation and STAT5 recruitment by a COOH-terminal region of the IL-2 receptor beta-chain.
    Kirken RA; Rui H; Malabarba MG; Howard OM; Kawamura M; O'Shea JJ; Farrar WL
    Cytokine; 1995 Oct; 7(7):689-700. PubMed ID: 8580378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming Mutations of Jak3 (A573V and M511I) Show Differential Sensitivity to Selective Jak3 Inhibitors.
    Martinez GS; Ross JA; Kirken RA
    Clin Cancer Drugs; 2016; 3(2):131-137. PubMed ID: 29046866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential substrate recognition capabilities of Janus family protein tyrosine kinases within the interleukin 2 receptor (IL2R) system: Jak3 as a potential molecular target for treatment of leukemias with a hyperactive Jak-Stat signaling machinery.
    Witthuhn BA; Williams MD; Kerawalla H; Uckun FM
    Leuk Lymphoma; 1999 Jan; 32(3-4):289-97. PubMed ID: 10037026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EGF-induced MMP-9 expression is mediated by the JAK3/ERK pathway, but not by the JAK3/STAT-3 pathway in a SKBR3 breast cancer cell line.
    Kim S; Choi JH; Lim HI; Lee SK; Kim WW; Cho S; Kim JS; Kim JH; Choe JH; Nam SJ; Lee JE; Yang JH
    Cell Signal; 2009 Jun; 21(6):892-8. PubMed ID: 19385051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. JAK3 pathway is constitutively active in B-lineage acute lymphoblastic leukemia.
    Uckun FM; Pitt J; Qazi S
    Expert Rev Anticancer Ther; 2011 Jan; 11(1):37-48. PubMed ID: 21070101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Janus kinases in interleukin-2-mediated signaling: JAK1 and JAK3 are differentially regulated by tyrosine phosphorylation.
    Liu KD; Gaffen SL; Goldsmith MA; Greene WC
    Curr Biol; 1997 Nov; 7(11):817-26. PubMed ID: 9382798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activating alleles of JAK3 in acute megakaryoblastic leukemia.
    Walters DK; Mercher T; Gu TL; O'Hare T; Tyner JW; Loriaux M; Goss VL; Lee KA; Eide CA; Wong MJ; Stoffregen EP; McGreevey L; Nardone J; Moore SA; Crispino J; Boggon TJ; Heinrich MC; Deininger MW; Polakiewicz RD; Gilliland DG; Druker BJ
    Cancer Cell; 2006 Jul; 10(1):65-75. PubMed ID: 16843266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of a JAK3-Selective Inhibitor: Functional Differentiation of JAK3-Selective Inhibition over pan-JAK or JAK1-Selective Inhibition.
    Telliez JB; Dowty ME; Wang L; Jussif J; Lin T; Li L; Moy E; Balbo P; Li W; Zhao Y; Crouse K; Dickinson C; Symanowicz P; Hegen M; Banker ME; Vincent F; Unwalla R; Liang S; Gilbert AM; Brown MF; Hayward M; Montgomery J; Yang X; Bauman J; Trujillo JI; Casimiro-Garcia A; Vajdos FF; Leung L; Geoghegan KF; Quazi A; Xuan D; Jones L; Hett E; Wright K; Clark JD; Thorarensen A
    ACS Chem Biol; 2016 Dec; 11(12):3442-3451. PubMed ID: 27791347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway.
    Lonetti A; Cappellini A; Bertaina A; Locatelli F; Pession A; Buontempo F; Evangelisti C; Evangelisti C; Orsini E; Zambonin L; Neri LM; Martelli AM; Chiarini F
    J Hematol Oncol; 2016 Oct; 9(1):114. PubMed ID: 27776559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.