BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30232653)

  • 1. Improved acid-stress tolerance of Lactococcus lactis NZ9000 and Escherichia coli BL21 by overexpression of the anti-acid component recT.
    Zhu Z; Ji X; Wu Z; Zhang J; Du G
    J Ind Microbiol Biotechnol; 2018 Dec; 45(12):1091-1101. PubMed ID: 30232653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli DnaK.
    Abdullah-Al-Mahin ; Sugimoto S; Higashi C; Matsumoto S; Sonomoto K
    Appl Environ Microbiol; 2010 Jul; 76(13):4277-85. PubMed ID: 20453133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of RecO deficiency in Lactococcus lactis NZ9000 on resistance to multiple environmental stresses.
    Zhang M; Chen J; Zhang J; Du G
    J Sci Food Agric; 2014 Dec; 94(15):3125-33. PubMed ID: 24648035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters.
    Zhu Z; Yang J; Yang P; Wu Z; Zhang J; Du G
    Microb Cell Fact; 2019 Aug; 18(1):136. PubMed ID: 31409416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis of Lactobacillus paracasei SMN-LBK under ethanol stress.
    Guo J; Li X; Li B; Yang J; Jin D; Li K
    J Dairy Sci; 2020 Sep; 103(9):7813-7825. PubMed ID: 32564954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous expression of Lactobacillus casei RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress.
    Wu C; Zhang J; Du G; Chen J
    Bioresour Technol; 2013 Sep; 143():238-41. PubMed ID: 23796607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins.
    Wouters JA; Frenkiel H; de Vos WM; Kuipers OP; Abee T
    Appl Environ Microbiol; 2001 Nov; 67(11):5171-8. PubMed ID: 11679342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic understanding of Lactococcus lactis response to acid stress using transcriptomics approaches.
    Zhu Z; Yang P; Wu Z; Zhang J; Du G
    J Ind Microbiol Biotechnol; 2019 Nov; 46(11):1621-1629. PubMed ID: 31414323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome analysis reveals the contribution of membrane transporters to acid tolerance in Lactococcus lactis.
    Zhu Z; Yang P; Yang J; Zhang J
    J Biotechnol; 2022 Sep; 357():9-17. PubMed ID: 35963594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance.
    Weidmann S; Maitre M; Laurent J; Coucheney F; Rieu A; Guzzo J
    Int J Food Microbiol; 2017 Apr; 247():18-23. PubMed ID: 27318622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative proteomics of Lactococcus lactis F44 under cross-stress of low pH and lactate.
    Wu H; Zhao Y; Du Y; Miao S; Liu J; Li Y; Caiyin Q; Qiao J
    J Dairy Sci; 2018 Aug; 101(8):6872-6884. PubMed ID: 29778478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous expression of the Bacillus subtilis (natto) alanine dehydrogenase in Escherichia coli and Lactococcus lactis.
    Ye W; Huo G; Chen J; Liu F; Yin J; Yang L; Ma X
    Microbiol Res; 2010 May; 165(4):268-75. PubMed ID: 19720515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protective Effects of Selenium Nanoparticle-Enriched Lactococcus lactis NZ9000 against Enterotoxigenic Escherichia coli K88-Induced Intestinal Barrier Damage in Mice.
    Chen Y; Qiao L; Song X; Ma L; Dou X; Xu C
    Appl Environ Microbiol; 2021 Nov; 87(23):e0163621. PubMed ID: 34524898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44.
    Wang B; Zhang H; Liang D; Hao P; Li Y; Qiao J
    J Dairy Sci; 2017 Dec; 100(12):9532-9538. PubMed ID: 28987584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UvrA expression of
    Moghaddam TK; Zhang J; Du G
    J Food Sci Technol; 2017 Mar; 54(3):639-649. PubMed ID: 28298677
    [No Abstract]   [Full Text] [Related]  

  • 16. Expression of
    Li L; Kim SA; Fang R; Han NS
    J Microbiol Biotechnol; 2018 Aug; 28(8):1293-1298. PubMed ID: 29996619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.
    Dong X; Tian B; Dai S; Li T; Guo L; Tan Z; Jiao Z; Jin Q; Wang Y; Hua Y
    PLoS One; 2015; 10(11):e0142918. PubMed ID: 26562776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holin-assisted bacterial recombinant protein export.
    Guo T; Cui Y; Zhang L; Xu X; Xu Z; Kong J
    Biotechnol Bioeng; 2022 Oct; 119(10):2908-2918. PubMed ID: 35822237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri.
    Van Pijkeren JP; Neoh KM; Sirias D; Findley AS; Britton RA
    Bioengineered; 2012; 3(4):209-17. PubMed ID: 22750793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Lactococcus lactis for D-Lactic Acid Production from Starch.
    Aso Y; Hashimoto A; Ohara H
    Curr Microbiol; 2019 Oct; 76(10):1186-1192. PubMed ID: 31302724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.