These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3023286)

  • 1. Cyclic AMP inhibits developmental regulation of Chlamydia trachomatis.
    Kaul R; Wenman WM
    J Bacteriol; 1986 Nov; 168(2):722-7. PubMed ID: 3023286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic AMP inhibits protein synthesis in Chlamydia trachomatis at a transcriptional level.
    Kaul R; Tao S; Wenman WM
    Biochim Biophys Acta; 1990 Jun; 1053(1):106-12. PubMed ID: 2163685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Damage/Danger Associated Molecular Patterns (DAMPs) Modulate Chlamydia pecorum and C. trachomatis Serovar E Inclusion Development In Vitro.
    Leonard CA; Schoborg RV; Borel N
    PLoS One; 2015; 10(8):e0134943. PubMed ID: 26248286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control mechanisms governing the infectivity of Chlamydia trachomatis for hela cells: modulation by cyclic nucleotides, prostaglandins and calcium.
    Ward ME; Salari H
    J Gen Microbiol; 1982 Mar; 128(3):639-50. PubMed ID: 6281367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique ultrastructure in the elementary body of Chlamydia sp. strain TWAR.
    Chi EY; Kuo CC; Grayston JT
    J Bacteriol; 1987 Aug; 169(8):3757-63. PubMed ID: 3611029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.
    Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA
    Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle.
    Wolf K; Betts HJ; Chellas-Géry B; Hower S; Linton CN; Fields KA
    Mol Microbiol; 2006 Sep; 61(6):1543-55. PubMed ID: 16968227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genes required for assembly and function of the protein synthetic system in Chlamydia trachomatis are expressed early in elementary to reticulate body transformation.
    Gérard HC; Whittum-Hudson JA; Hudson AP
    Mol Gen Genet; 1997 Aug; 255(6):637-42. PubMed ID: 9323368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polypeptide composition of Chlamydia trachomatis.
    Salari SH; Ward ME
    J Gen Microbiol; 1981 Apr; 123(2):197-207. PubMed ID: 7320696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The danger signal adenosine induces persistence of chlamydial infection through stimulation of A2b receptors.
    Pettengill MA; Lam VW; Ojcius DM
    PLoS One; 2009 Dec; 4(12):e8299. PubMed ID: 20011598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia trachomatis elementary bodies possess proteins which bind to eucaryotic cell membranes.
    Wenman WM; Meuser RU
    J Bacteriol; 1986 Feb; 165(2):602-7. PubMed ID: 3511037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sustained antibiotic bactericidal treatment on Chlamydia trachomatis-infected epithelial-like cells (HeLa) and monocyte-like cells (THP-1 and U-937).
    Mpiga P; Ravaoarinoro M
    Int J Antimicrob Agents; 2006 Apr; 27(4):316-24. PubMed ID: 16527461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of Chlamydia trachomatis antigen and antiserum: a review.
    Terho P; Matikainen MT
    Scand J Infect Dis Suppl; 1982; 32():30-3. PubMed ID: 6753132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of an antigen localized to an apparent septum within dividing chlamydiae.
    Brown WJ; Rockey DD
    Infect Immun; 2000 Feb; 68(2):708-15. PubMed ID: 10639437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the Growth of
    Nogueira AT; Braun KM; Carabeo RA
    Front Cell Infect Microbiol; 2017; 7():438. PubMed ID: 29067282
    [No Abstract]   [Full Text] [Related]  

  • 16. Computational Modeling of the Chlamydial Developmental Cycle Reveals a Potential Role for Asymmetric Division.
    Chiarelli TJ; Grieshaber NA; Appa C; Grieshaber SS
    mSystems; 2023 Apr; 8(2):e0005323. PubMed ID: 36927072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The developmental cycle of Chlamydia trachomatis in McCoy cells treated with cytochalasin B.
    Stirling P; Richmond S
    J Gen Microbiol; 1977 May; 100(1):31-42. PubMed ID: 195005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The microbicidal agent C31G inhibits Chlamydia trachomatis infectivity in vitro.
    Wyrick PB; Knight ST; Gerbig DG; Raulston JE; Davis CH; Paul TR; Malamud D
    Antimicrob Agents Chemother; 1997 Jun; 41(6):1335-44. PubMed ID: 9174195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development.
    Hall JV; Sun J; Slade J; Kintner J; Bambino M; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():158. PubMed ID: 25414835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Inclusion Kinetics of
    Chiarelli TJ; Grieshaber NA; Omsland A; Remien CH; Grieshaber SS
    mSystems; 2020 Oct; 5(5):. PubMed ID: 33051378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.