These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 3023308)
1. NAD-glycohydrolase activity of botulinum C2 toxin: a possible role of component I in the mode of action of the toxin. Ohishi I J Biochem; 1986 Aug; 100(2):407-13. PubMed ID: 3023308 [TBL] [Abstract][Full Text] [Related]
2. ADP-ribosylation of nonmuscle actin with component I of C2 toxin. Ohishi I; Tsuyama S Biochem Biophys Res Commun; 1986 Apr; 136(2):802-6. PubMed ID: 3518719 [TBL] [Abstract][Full Text] [Related]
3. Salmonella enterica SpvB ADP-ribosylates actin at position arginine-177-characterization of the catalytic domain within the SpvB protein and a comparison to binary clostridial actin-ADP-ribosylating toxins. Hochmann H; Pust S; von Figura G; Aktories K; Barth H Biochemistry; 2006 Jan; 45(4):1271-7. PubMed ID: 16430223 [TBL] [Abstract][Full Text] [Related]
5. Purification and characterization of heterologous component IIs of botulinum C2 toxin. Ohishi I; Hama Y Microbiol Immunol; 1992; 36(3):221-9. PubMed ID: 1376392 [TBL] [Abstract][Full Text] [Related]
6. ADP-ribosylation of a Mr 21,000 membrane protein by type D botulinum toxin. Ohashi Y; Narumiya S J Biol Chem; 1987 Feb; 262(4):1430-3. PubMed ID: 3805032 [TBL] [Abstract][Full Text] [Related]
7. Activation of botulinum C2 toxin by trypsin. Ohishi I Infect Immun; 1987 Jun; 55(6):1461-5. PubMed ID: 3570475 [TBL] [Abstract][Full Text] [Related]
8. ADP-ribosylation of nonmuscle actin by component I of botulinum C2 toxin inactivates the ability to interact with unmodified actin. Ohishi I; Morikawa Y; Baba T J Biochem; 1990 Mar; 107(3):420-5. PubMed ID: 2341376 [TBL] [Abstract][Full Text] [Related]
9. Regulation of NAD+ glycohydrolase activity by NAD(+)-dependent auto-ADP-ribosylation. Han MK; Lee JY; Cho YS; Song YM; An NH; Kim HR; Kim UH Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):903-8. PubMed ID: 8836136 [TBL] [Abstract][Full Text] [Related]
10. Heterogeneities of two components of C2 toxin produced by Clostridium botulinum types C and D. Ohishi I; Okada Y J Gen Microbiol; 1986 Jan; 132(1):125-31. PubMed ID: 3086490 [TBL] [Abstract][Full Text] [Related]
11. Binding of NAD+ by cholera toxin. Galloway TS; van Heyningen S Biochem J; 1987 May; 244(1):225-30. PubMed ID: 2821999 [TBL] [Abstract][Full Text] [Related]
12. ADP-ribosylation of Drosophila indirect-flight-muscle actin and arthrin by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. Just I; Hennessey ES; Drummond DR; Aktories K; Sparrow JC Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):409-12. PubMed ID: 8484722 [TBL] [Abstract][Full Text] [Related]
13. Response of tissue-cultured cynomolgus monkey kidney cells to botulinum C2 toxin. Miyake M; Ohishi I Microb Pathog; 1987 Oct; 3(4):279-86. PubMed ID: 3332909 [TBL] [Abstract][Full Text] [Related]
14. Bovine liver mitochondrial NAD+ glycohydrolase. Relationship to ADP-ribosylation and calcium fluxes. Ziegler M; Jorcke D; Herrero-Yraola A; Schweiger M Adv Exp Med Biol; 1997; 419():443-6. PubMed ID: 9193687 [TBL] [Abstract][Full Text] [Related]
15. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin. Parikh SL; Schramm VL Biochemistry; 2004 Feb; 43(5):1204-12. PubMed ID: 14756556 [TBL] [Abstract][Full Text] [Related]
16. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin. Schnell L; Mittler AK; Sadi M; Popoff MR; Schwan C; Aktories K; Mattarei A; Azarnia Tehran D; Montecucco C; Barth H Toxins (Basel); 2016 Apr; 8(4):101. PubMed ID: 27043629 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of phagocytosis by rainbow trout (Oncorhynchus mykiss) macrophages by botulinum C2 toxin and its trypsinized component II. Kodama H; Baba T; Ohishi I Dev Comp Immunol; 1994; 18(5):389-95. PubMed ID: 7698363 [TBL] [Abstract][Full Text] [Related]
18. Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions: implication for CD38 signalling. Cakir-Kiefer C; Muller-Steffner H; Oppenheimer N; Schuber F Biochem J; 2001 Sep; 358(Pt 2):399-406. PubMed ID: 11513738 [TBL] [Abstract][Full Text] [Related]
19. Rapid degradation of NAD by retinoic acid-differentiated HL-60 granulocyte membranes prevents ADP ribosylation. McLeish KR; Jacobs AA Biochem Biophys Res Commun; 1993 Apr; 192(2):870-8. PubMed ID: 8387292 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the ADP-ribosylation of actin by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. Aktories K; Geipel U; Wille M; Just I J Physiol (Paris); 1990; 84(4):262-6. PubMed ID: 2079662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]