BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30233146)

  • 1. Anti-HER2 functionalized graphene oxide as survivin-siRNA delivery carrier inhibits breast carcinoma growth in vitro and in vivo.
    Wang X; Sun Q; Cui C; Li J; Wang Y
    Drug Des Devel Ther; 2018; 12():2841-2855. PubMed ID: 30233146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene-silencing effects of anti-survivin siRNA delivered by RGDV-functionalized nanodiamond carrier in the breast carcinoma cell line MCF-7.
    Bi Y; Zhang Y; Cui C; Ren L; Jiang X
    Int J Nanomedicine; 2016; 11():5771-5787. PubMed ID: 27853365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doxorubicin and anti-VEGF siRNA co-delivery via nano-graphene oxide for enhanced cancer therapy in vitro and in vivo.
    Sun Q; Wang X; Cui C; Li J; Wang Y
    Int J Nanomedicine; 2018; 13():3713-3728. PubMed ID: 29983564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells.
    Imani R; Shao W; Taherkhani S; Emami SH; Prakash S; Faghihi S
    Colloids Surf B Biointerfaces; 2016 Nov; 147():315-325. PubMed ID: 27543693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient nuclear delivery of anti-cancer drugs using a bio-functionalized reduced graphene oxide.
    Zheng XT; Ma XQ; Li CM
    J Colloid Interface Sci; 2016 Apr; 467():35-42. PubMed ID: 26773607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and Characterization of Functionalized Graphene Oxide Carrier for siRNA Delivery.
    Li J; Ge X; Cui C; Zhang Y; Wang Y; Wang X; Sun Q
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30336549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation Optimization of Bovine Serum Albumin Nanoparticles and Its Application for siRNA Delivery.
    Wang Y; Chen S; Yang X; Zhang S; Cui C
    Drug Des Devel Ther; 2021; 15():1531-1547. PubMed ID: 33883877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arginine-terminated generation 4 PAMAM dendrimer as an effective nanovector for functional siRNA delivery in vitro and in vivo.
    Liu C; Liu X; Rocchi P; Qu F; Iovanna JL; Peng L
    Bioconjug Chem; 2014 Mar; 25(3):521-32. PubMed ID: 24494983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-weight polyethylenimine cross-linked 2-hydroxypopyl-β-cyclodextrin and folic acid as an efficient and nontoxic siRNA carrier for gene silencing and tumor inhibition by VEGF siRNA.
    Li JM; Wang YY; Zhang W; Su H; Ji LN; Mao ZW
    Int J Nanomedicine; 2013; 8():2101-17. PubMed ID: 23766646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for "smart" small interfering RNA delivery and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells.
    Li G; Hu Z; Yin H; Zhang Y; Huang X; Wang S; Li W
    Int J Nanomedicine; 2013; 8():1293-306. PubMed ID: 23569377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Characterization of a New Cationic Lipid: Efficient siRNA Delivery and Anticancer Activity of Survivin-siRNA Lipoplexes for the Treatment of Lung and Breast Cancers.
    Vaidya S; Mohod A; Eedara AC; Andugulapati SB; Pabbaraja S
    ChemMedChem; 2023 Aug; 18(16):e202300097. PubMed ID: 37306531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A strategy using mesoporous polymer nanospheres as nanocarriers of Bcl-2 siRNA towards breast cancer therapy.
    Wu X; Zheng Y; Yang D; Chen T; Feng B; Weng J; Wang J; Zhang K; Zhang X
    J Mater Chem B; 2019 Jan; 7(3):477-487. PubMed ID: 32254735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications.
    Imani R; Emami SH; Faghihi S
    Phys Chem Chem Phys; 2015 Mar; 17(9):6328-39. PubMed ID: 25650242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional hybrid nanoparticles as magnetic delivery systems for siRNA targeting the HER2 gene in breast cancer cells.
    Cristofolini T; Dalmina M; Sierra JA; Silva AH; Pasa AA; Pittella F; Creczynski-Pasa TB
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110555. PubMed ID: 32228895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved delivery of Mcl-1 and survivin siRNA combination in breast cancer cells with additive siRNA complexes.
    Santadkha T; Skolpap W; K C R; Ansari A; Kucharski C; Atz Dick T; Uludağ H
    Invest New Drugs; 2022 Oct; 40(5):962-976. PubMed ID: 35834040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymeric micelles containing reversibly phospholipid-modified anti-survivin siRNA: a promising strategy to overcome drug resistance in cancer.
    Salzano G; Riehle R; Navarro G; Perche F; De Rosa G; Torchilin VP
    Cancer Lett; 2014 Feb; 343(2):224-31. PubMed ID: 24099916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A small interfering RNA targeting vascular endothelial growth factor efficiently inhibits growth of VX2 cells and VX2 tumor model of hepatocellular carcinoma in rabbit by transarterial embolization-mediated siRNA delivery.
    Zou Y; Guo CG; Yang ZG; Sun JH; Zhang MM; Fu CY
    Drug Des Devel Ther; 2016; 10():1243-55. PubMed ID: 27069355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel polyacrylate-based cationic nanoparticles for survivin siRNA delivery combined with mitoxantrone for treatment of breast cancer.
    Arami S; Mahdavi M; Rashidi MR; Fathi M; Hejazi MS; Samadi N
    Biologicals; 2016 Nov; 44(6):487-496. PubMed ID: 27712979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a magnetic nano-graphene oxide carrier for improved glioma-targeted drug delivery and imaging: In vitro and in vivo evaluations.
    Shirvalilou S; Khoei S; Khoee S; Raoufi NJ; Karimi MR; Shakeri-Zadeh A
    Chem Biol Interact; 2018 Nov; 295():97-108. PubMed ID: 30170108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survivin-targeting miR-542-3p overcomes HER3 signaling-induced chemoresistance and enhances the antitumor activity of paclitaxel against HER2-overexpressing breast cancer.
    Lyu H; Wang S; Huang J; Wang B; He Z; Liu B
    Cancer Lett; 2018 Apr; 420():97-108. PubMed ID: 29409974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.