These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30233289)

  • 1. Mobile Mechatronic/Robotic Orthotic Devices to Assist-Rehabilitate Neuromotor Impairments in the Upper Limb: A Systematic and Synthetic Review.
    Onose G; Popescu N; Munteanu C; Ciobanu V; Sporea C; Mirea MD; Daia C; Andone I; Spînu A; Mirea A
    Front Neurosci; 2018; 12():577. PubMed ID: 30233289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Intelligence-Based Wearable Robotic Exoskeletons for Upper Limb Rehabilitation: A Review.
    Vélez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rehabilitative and assistive wearable mechatronic upper-limb devices: A review.
    Desplenter T; Zhou Y; Edmonds BP; Lidka M; Goldman A; Trejos AL
    J Rehabil Assist Technol Eng; 2020; 7():2055668320917870. PubMed ID: 32435505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechatronic Wearable Exoskeletons for Bionic Bipedal Standing and Walking: A New Synthetic Approach.
    Onose G; Cârdei V; Crăciunoiu ŞT; Avramescu V; Opriş I; Lebedev MA; Constantinescu MV
    Front Neurosci; 2016; 10():343. PubMed ID: 27746711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable Solutions for Patients with Parkinson's Disease and Neurocognitive Disorder: A Systematic Review.
    Channa A; Popescu N; Ciobanu V
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rationale for prescription, and effectiveness of, upper limb orthotic intervention for children with cerebral palsy: a systematic review.
    Garbellini S; Robert Y; Randall M; Elliott C; Imms C
    Disabil Rehabil; 2018 Jun; 40(12):1361-1371. PubMed ID: 28286982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review.
    Khalid S; Alnajjar F; Gochoo M; Renawi A; Shimoda S
    Disabil Rehabil Assist Technol; 2023 Jul; 18(5):658-672. PubMed ID: 33861684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies.
    Proietti T; Crocher V; Roby-Brami A; Jarrasse N
    IEEE Rev Biomed Eng; 2016; 9():4-14. PubMed ID: 27071194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of robo-assisted lower limb rehabilitation for spastic patients: A systematic review.
    Shakti D; Mathew L; Kumar N; Kataria C
    Biosens Bioelectron; 2018 Oct; 117():403-415. PubMed ID: 29960851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of robotic assisted rehabilitation for mobility and functional ability in adult stroke patients: a systematic review.
    Lo K; Stephenson M; Lockwood C
    JBI Database System Rev Implement Rep; 2017 Dec; 15(12):3049-3091. PubMed ID: 29219877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single joint robotic orthoses for gait rehabilitation: An educational technical review.
    Hussain S; Jamwal PK; Ghayesh MH
    J Rehabil Med; 2016 Apr; 48(4):333-8. PubMed ID: 26936800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exoskeletons With Virtual Reality, Augmented Reality, and Gamification for Stroke Patients' Rehabilitation: Systematic Review.
    Mubin O; Alnajjar F; Jishtu N; Alsinglawi B; Al Mahmud A
    JMIR Rehabil Assist Technol; 2019 Sep; 6(2):e12010. PubMed ID: 31586360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic exoskeletons: a perspective for the rehabilitation of arm coordination in stroke patients.
    Jarrassé N; Proietti T; Crocher V; Robertson J; Sahbani A; Morel G; Roby-Brami A
    Front Hum Neurosci; 2014; 8():947. PubMed ID: 25520638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects.
    Sheng B; Zhang Y; Meng W; Deng C; Xie S
    Med Eng Phys; 2016 Jul; 38(7):587-606. PubMed ID: 27117423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Need for mechanically and ergonomically enhanced tremor-suppression orthoses for the upper limb: a systematic review.
    Fromme NP; Camenzind M; Riener R; Rossi RM
    J Neuroeng Rehabil; 2019 Jul; 16(1):93. PubMed ID: 31319893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The economic cost of robotic rehabilitation for adult stroke patients: a systematic review.
    Lo K; Stephenson M; Lockwood C
    JBI Database System Rev Implement Rep; 2019 Apr; 17(4):520-547. PubMed ID: 30973526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: a systematic scoping review.
    Singh H; Unger J; Zariffa J; Pakosh M; Jaglal S; Craven BC; Musselman KE
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):704-715. PubMed ID: 29334467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orthotic devices after stroke and other non-progressive brain lesions.
    Tyson SF; Kent RM
    Cochrane Database Syst Rev; 2009 Jan; (1):CD003694. PubMed ID: 19160222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review.
    Fisahn C; Aach M; Jansen O; Moisi M; Mayadev A; Pagarigan KT; Dettori JR; Schildhauer TA
    Global Spine J; 2016 Dec; 6(8):822-841. PubMed ID: 27853668
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.