BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3023343)

  • 1. Identification of histidyl and thiol groups at the active site of rabbit renal dipeptide transporter.
    Miyamoto Y; Ganapathy V; Leibach FH
    J Biol Chem; 1986 Dec; 261(34):16133-40. PubMed ID: 3023343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of histidine residues and sulfhydryl groups in the function of the biotin transport carrier of rabbit intestinal brush-border membrane.
    Said HM; Mohammadkhani R
    Biochim Biophys Acta; 1992 Jun; 1107(2):238-44. PubMed ID: 1504068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of thiol groups in the function of the dipeptide/proton cotransport system in rabbit renal brush-border membrane vesicles.
    Miyamoto Y; Tiruppathi C; Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1989 Jan; 978(1):25-31. PubMed ID: 2536554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of proton and essential histidyl residues on the transport kinetics of the H+/peptide cotransport systems in intestine (PEPT 1) and kidney (PEPT 2).
    Brandsch M; Brandsch C; Ganapathy ME; Chew CS; Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1997 Mar; 1324(2):251-62. PubMed ID: 9092712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of amino acid side-chain modification on the uptake system for beta-lactam antibiotics and dipeptides from rabbit small intestine.
    Kramer W; Dürckheimer W; Girbig F; Gutjahr U; Leipe I; Oekonomopulos R
    Biochim Biophys Acta; 1990 Oct; 1028(2):174-82. PubMed ID: 2223791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histidyl residues at the active site of the Na/succinate co-transporter in rabbit renal brush borders.
    Bindslev N; Wright EM
    J Membr Biol; 1984; 81(2):159-70. PubMed ID: 6541702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of various chemical modifiers on H+ coupled transport of cephradine via dipeptide carriers in rabbit intestinal brush-border membranes: role of histidine residues.
    Kato M; Maegawa H; Okano T; Inui K; Hori R
    J Pharmacol Exp Ther; 1989 Nov; 251(2):745-9. PubMed ID: 2810124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for an essential sulfhydryl group at the substrate binding site of the A-system transporter of Ehrlich cell plasma membranes.
    McCormick J; Johnstone RM
    Biochem Cell Biol; 1990 Feb; 68(2):512-9. PubMed ID: 2160834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of the intestinal uptake system for beta-lactam antibiotics by diethylpyrocarbonate.
    Kramer W; Girbig F; Petzoldt E; Leipe I
    Biochim Biophys Acta; 1988 Aug; 943(2):288-96. PubMed ID: 3401482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carrier-mediated transport of pyroglutamyl-histidine in renal brush border membrane vesicles.
    Skopicki HA; Fisher K; Zikos D; Flouret G; Bloch R; Kubillus S; Peterson DR
    Am J Physiol; 1988 Dec; 255(6 Pt 1):C822-7. PubMed ID: 3202151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and chemical modification of the Na(+)-dependent bile-acid transport system in brush-border membrane vesicles from rabbit ileum.
    Kramer W; Nicol SB; Girbig F; Gutjahr U; Kowalewski S; Fasold H
    Biochim Biophys Acta; 1992 Oct; 1111(1):93-102. PubMed ID: 1390867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of transport of L-alanine by luminal-membrane vesicles from pars recta of rabbit proximal tubule.
    Vorum H; Jessen H; Jørgensen KE; Sheikh MI
    FEBS Lett; 1988 Jan; 227(1):35-8. PubMed ID: 2828110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thyrotropin-releasing hormone (TRH) uptake in intestinal brush-border membrane vesicles: comparison with proton-coupled dipeptide and Na(+)-coupled glucose transport.
    Thwaites DT; Simmons NL; Hirst BH
    Pharm Res; 1993 May; 10(5):667-73. PubMed ID: 8391693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of glycine from L-alanylglycine into renal brush border vesicles.
    Welch CL; Campbell BJ
    J Membr Biol; 1980; 54(1):39-50. PubMed ID: 7205942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton-driven dipeptide uptake in primary cultured rabbit conjunctival epithelial cells.
    Basu SK; Haworth IS; Bolger MB; Lee VH
    Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2365-73. PubMed ID: 9804145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit.
    Ganapathy V; Mendicino JF; Leibach FH
    J Biol Chem; 1981 Jan; 256(1):118-24. PubMed ID: 7451429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles.
    Ganapathy V; Burckhardt G; Leibach FH
    J Biol Chem; 1984 Jul; 259(14):8954-9. PubMed ID: 6746633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple carriers for dipeptide transport: carrier-mediated transport of glycyl-L-proline in renal BBMV.
    Skopicki HA; Fisher K; Zikos D; Bloch R; Flouret G; Peterson DR
    Am J Physiol; 1991 Oct; 261(4 Pt 2):F670-8. PubMed ID: 1928378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic evidence for a common transporter for glycylsarcosine and phenylalanylprolylalanine in renal brush-border membrane vesicles.
    Tiruppathi C; Ganapathy V; Leibach FH
    J Biol Chem; 1990 Sep; 265(25):14870-4. PubMed ID: 2394703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H+ coupled active transport of bestatin via the dipeptide transport system in rabbit intestinal brush-border membranes.
    Inui K; Tomita Y; Katsura T; Okano T; Takano M; Hori R
    J Pharmacol Exp Ther; 1992 Feb; 260(2):482-6. PubMed ID: 1738097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.