These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3023343)

  • 41. Functional expression of novel peptide transporter in renal basolateral membranes.
    Terada T; Sawada K; Ito T; Saito H; Hashimoto Y; Inui K
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F851-7. PubMed ID: 11053045
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Basolateral dipeptide transport by the intestine of the teleost Oreochromis mossambicus.
    Thamotharan M; Zonno V; Storelli C; Ahearn GA
    Am J Physiol; 1996 May; 270(5 Pt 2):R948-54. PubMed ID: 8928925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiplicity of the H+-dependent transport mechanism of dipeptide and anionic beta-lactam antibiotic ceftibuten in rat intestinal brush-border membrane.
    Iseki K; Sugawara M; Sato K; Naasani I; Hayakawa T; Kobayashi M; Miyazaki K
    J Pharmacol Exp Ther; 1999 Apr; 289(1):66-71. PubMed ID: 10086988
    [TBL] [Abstract][Full Text] [Related]  

  • 44. H+ coupled uphill transport of aminocephalosporins via the dipeptide transport system in rabbit intestinal brush-border membranes.
    Okano T; Inui K; Maegawa H; Takano M; Hori R
    J Biol Chem; 1986 Oct; 261(30):14130-4. PubMed ID: 3021727
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dipeptide transport in brush-border membrane vesicles (BBMV) prepared from human full-term placentae.
    Meredith D; Laynes RW
    Placenta; 1996; 17(2-3):173-9. PubMed ID: 8730888
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-affinity transport of pyroglutamyl-histidine in renal brush-border membrane vesicles.
    Skopicki HA; Fisher K; Zikos D; Flouret G; Peterson DR
    Am J Physiol; 1989 Nov; 257(5 Pt 1):C971-5. PubMed ID: 2596591
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kidney brush-border membrane transporters: differential sensitivity to diethyl pyrocarbonate.
    Beaumier B; BĂ©liveau R
    Biochim Biophys Acta; 1991 Sep; 1068(2):142-8. PubMed ID: 1911827
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline.
    Ganapathy V; Leibach FH
    J Biol Chem; 1983 Dec; 258(23):14189-92. PubMed ID: 6643475
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence for histidyl and carboxy groups at the active site of the human placental Na+-H+ exchanger.
    Ganapathy V; Balkovetz DF; Ganapathy ME; Mahesh VB; Devoe LD; Leibach FH
    Biochem J; 1987 Jul; 245(2):473-7. PubMed ID: 2822022
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemical modification of Corynebacterium sarcosine oxidase: role of sulfhydryl and histidyl groups.
    Hayashi S; Suzuki M; Nakamura S
    J Biochem; 1983 Aug; 94(2):551-8. PubMed ID: 6630175
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inactivation of the renal microvillus membrane Na+-H+ exchanger by histidine-specific reagents.
    Grillo FG; Aronson PS
    J Biol Chem; 1986 Jan; 261(3):1120-5. PubMed ID: 3003054
    [TBL] [Abstract][Full Text] [Related]  

  • 52. H+ gradient-driven dipeptide reabsorption in proximal tubule of rat kidney. Studies in vivo and in vitro.
    Silbernagl S; Ganapathy V; Leibach FH
    Am J Physiol; 1987 Sep; 253(3 Pt 2):F448-57. PubMed ID: 3631280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancement of the small intestinal uptake of phenylalanylglycine via a H+/oligopeptide transport system by chemical modification with fatty acids.
    Fujita T; Morishita Y; Ito H; Kuribayashi D; Yamamoto A; Muranishi S
    Life Sci; 1997; 61(25):2455-65. PubMed ID: 9416764
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dipeptide transporters in apical and basolateral membranes of the human intestinal cell line Caco-2.
    Saito H; Inui K
    Am J Physiol; 1993 Aug; 265(2 Pt 1):G289-94. PubMed ID: 8396335
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of an oligopeptide transporter in renal lysosomes.
    Zhou X; Thamotharan M; Gangopadhyay A; Serdikoff C; Adibi SA
    Biochim Biophys Acta; 2000 Jun; 1466(1-2):372-8. PubMed ID: 10825457
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism of inhibition of proton: dipeptide co-transport during chronic enteritis in the mammalian small intestine.
    Sundaram U; Wisel S; Coon S
    Biochim Biophys Acta; 2005 Aug; 1714(2):134-40. PubMed ID: 16039984
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of intestinal brush border membrane aminopeptidase N in dipeptide transport.
    Antonov VK; Vorotyntseva TI; Bessmertnaya LYa ; Mikhailova AG; Zilberman MI
    FEBS Lett; 1984 Jun; 171(2):227-32. PubMed ID: 6144575
    [TBL] [Abstract][Full Text] [Related]  

  • 58. H+ coupled transport of p.o. cephalosporins via dipeptide carriers in rabbit intestinal brush-border membranes: difference of transport characteristics between cefixime and cephradine.
    Inui K; Okano T; Maegawa H; Kato M; Takano M; Hori R
    J Pharmacol Exp Ther; 1988 Oct; 247(1):235-41. PubMed ID: 3171973
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intestinal glycyl-L-phenylalanine and L-phenylalanine transport in a euryhaline teleost.
    Reshkin SJ; Ahearn GA
    Am J Physiol; 1991 Mar; 260(3 Pt 2):R563-9. PubMed ID: 2001005
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carrier-mediated transport of cephalexin via the dipeptide transport system in rat renal brush-border membrane vesicles.
    Inui K; Okano T; Takano M; Saito H; Hori R
    Biochim Biophys Acta; 1984 Jan; 769(2):449-54. PubMed ID: 6696892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.