BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 3023360)

  • 41. Selective DNA repair in active genes.
    Hanawalt PC
    Acta Biol Hung; 1990; 41(1-3):77-91. PubMed ID: 2094132
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preferential DNA repair in active genes.
    Bohr VA
    Dan Med Bull; 1987 Dec; 34(6):309-20. PubMed ID: 3325235
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preferential and strand-specific DNA repair of (6-4) photoproducts detected by a photochemical method in the hamster DHFR gene.
    Link CJ; Mitchell DL; Nairn RS; Bohr VA
    Carcinogenesis; 1992 Nov; 13(11):1975-80. PubMed ID: 1423865
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of amplified cDNA and genomic sequences encoding human interleukin 2 in Chinese hamster ovary cells.
    Onomichi K; Eto Y; Shibai H
    J Biochem; 1987 Jul; 102(1):123-31. PubMed ID: 2822676
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Loss of intragenomic DNA repair heterogeneity with cellular differentiation.
    Bill CA; Grochan BM; Meyn RE; Bohr VA; Tofilon PJ
    J Biol Chem; 1991 Nov; 266(32):21821-6. PubMed ID: 1939206
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells.
    Urlaub G; Käs E; Carothers AM; Chasin LA
    Cell; 1983 Jun; 33(2):405-12. PubMed ID: 6305508
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The genetic defect in the Chinese hamster ovary cell mutant UV61 permits moderate selective repair of cyclobutane pyrimidine dimers in an expressed gene.
    Lommel L; Hanawalt PC
    Mutat Res; 1991 Sep; 255(2):183-91. PubMed ID: 1922150
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Caffeine inhibits gene-specific repair of UV-induced DNA damage in hamster cells and in human xeroderma pigmentosum group C cells.
    Link CJ; Evans MK; Cook JA; Muldoon R; Stevnsner T; Bohr VA
    Carcinogenesis; 1995 May; 16(5):1149-55. PubMed ID: 7767978
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Replication in the amplified dihydrofolate reductase domain in CHO cells may initiate at two distinct sites, one of which is a repetitive sequence element.
    Anachkova B; Hamlin JL
    Mol Cell Biol; 1989 Feb; 9(2):532-40. PubMed ID: 2710116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Site-specific demethylation and normal chromatin structure of the human dihydrofolate reductase gene promoter after transfection into CHO cells.
    Shimada T; Inokuchi K; Nienhuis AW
    Mol Cell Biol; 1987 Aug; 7(8):2830-7. PubMed ID: 3670295
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Heterogeneity of the structural organization of the chromatin domain including the dihydrofolate reductase gene in Chinese hamster ovary cell culture].
    Pemov AIu; Hamlin DL; Bavykin SG
    Mol Biol (Mosk); 1995; 29(4):832-40. PubMed ID: 7476950
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cell cycle regulation of transfected murine dihydrofolate reductase genes.
    Gasser CS; Schimke RT
    J Biol Chem; 1986 May; 261(15):6938-46. PubMed ID: 3700422
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene-specific and strand-specific DNA repair in the G1 and G2 phases of the cell cycle.
    Petersen LN; Orren DK; Bohr VA
    Mol Cell Biol; 1995 Jul; 15(7):3731-7. PubMed ID: 7791780
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transcription-coupled repair of psoralen cross-links but not monoadducts in Chinese hamster ovary cells.
    Islas AL; Baker FJ; Hanawalt PC
    Biochemistry; 1994 Sep; 33(35):10794-9. PubMed ID: 8075081
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formation and repair of antitumor antibiotic CC-1065-induced DNA adducts in the adenine phosphoribosyltransferase and amplified dihydrofolate reductase genes of Chinese hamster ovary cells.
    Tang MS; Qian M; Pao A
    Biochemistry; 1994 Mar; 33(9):2726-32. PubMed ID: 8117738
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Similar 150-kilobase DNA sequences are amplified in independently derived methotrexate-resistant Chinese hamster cells.
    Montoya-Zavala M; Hamlin JL
    Mol Cell Biol; 1985 Apr; 5(4):619-27. PubMed ID: 2985962
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polyadenylation of Chinese hamster dihydrofolate reductase genomic genes and minigenes after gene transfer.
    Venolia L; Urlaub G; Chasin LA
    Somat Cell Mol Genet; 1987 Sep; 13(5):491-504. PubMed ID: 3477873
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Localization of Chinese hamster dihydrofolate reductase gene to band p23 of chromosome 2.
    Funanage VL; Myoda TT
    Somat Cell Mol Genet; 1986 Nov; 12(6):649-55. PubMed ID: 3466362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional nucleotide excision repair is required for the preferential removal of N-ethylpurines from the transcribed strand of the dihydrofolate reductase gene of Chinese hamster ovary cells.
    Sitaram A; Plitas G; Wang W; Scicchitano DA
    Mol Cell Biol; 1997 Feb; 17(2):564-70. PubMed ID: 9001209
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Non-random deletions at the dihydrofolate reductase locus of Chinese hamster ovary cells induced by alpha-particles simulating radon.
    Jin Y; Yie TA; Carothers AM
    Carcinogenesis; 1995 Aug; 16(8):1981-91. PubMed ID: 7634430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.