BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 3023360)

  • 61. Repair of individual DNA strands in the hamster dihydrofolate reductase gene after treatment with ultraviolet light, alkylating agents, and cisplatin.
    May A; Nairn RS; Okumoto DS; Wassermann K; Stevnsner T; Jones JC; Bohr VA
    J Biol Chem; 1993 Jan; 268(3):1650-7. PubMed ID: 8420940
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Deletion analysis of the Chinese hamster dihydrofolate reductase gene promoter.
    Ciudad CJ; Urlaub G; Chasin LA
    J Biol Chem; 1988 Nov; 263(31):16274-82. PubMed ID: 3182792
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ongoing activity of RNA polymerase II confers preferential repair of nitrogen mustard-induced N-alkylpurines in the hamster dihydrofolate reductase gene.
    Wassermann K; Damgaard J
    Cancer Res; 1994 Jan; 54(1):175-81. PubMed ID: 7505196
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Differential introduction of DNA damage and repair in mammalian genes transcribed by RNA polymerases I and II.
    Vos JM; Wauthier EL
    Mol Cell Biol; 1991 Apr; 11(4):2245-52. PubMed ID: 2005908
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pattern of methylation of two genes coding for housekeeping functions.
    Stein R; Sciaky-Gallili N; Razin A; Cedar H
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2422-6. PubMed ID: 6302681
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Organization and genesis of dihydrofolate reductase amplicons in the genome of a methotrexate-resistant Chinese hamster ovary cell line.
    Ma C; Looney JE; Leu TH; Hamlin JL
    Mol Cell Biol; 1988 Jun; 8(6):2316-27. PubMed ID: 2841578
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Direct demonstration of genetic alterations at the dihydrofolate reductase locus after gamma irradiation.
    Graf LH; Chasin LA
    Mol Cell Biol; 1982 Jan; 2(1):93-6. PubMed ID: 6287224
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Replication initiates in a broad zone in the amplified CHO dihydrofolate reductase domain.
    Vaughn JP; Dijkwel PA; Hamlin JL
    Cell; 1990 Jun; 61(6):1075-87. PubMed ID: 2350784
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Chinese hamster dihydrofolate reductase replication origin beta is active at multiple ectopic chromosomal locations and requires specific DNA sequence elements for activity.
    Altman AL; Fanning E
    Mol Cell Biol; 2001 Feb; 21(4):1098-110. PubMed ID: 11158297
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characterization of mutations induced by 2-(N-acetoxy-N-acetyl)aminofluorene in the dihydrofolate reductase gene of cultured hamster cells.
    Carothers AM; Urlaub G; Steigerwalt RW; Chasin LA; Grunberger D
    Proc Natl Acad Sci U S A; 1986 Sep; 83(17):6519-23. PubMed ID: 3018736
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Gene-specific nuclear and mitochondrial repair of formamidopyrimidine DNA glycosylase-sensitive sites in Chinese hamster ovary cells.
    Taffe BG; Larminat F; Laval J; Croteau DL; Anson RM; Bohr VA
    Mutat Res; 1996 Dec; 364(3):183-92. PubMed ID: 8960130
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mapping an origin of DNA replication at a single-copy locus in exponentially proliferating mammalian cells.
    Vassilev LT; Burhans WC; DePamphilis ML
    Mol Cell Biol; 1990 Sep; 10(9):4685-9. PubMed ID: 2388621
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Gene amplification in a single cell cycle in Chinese hamster ovary cells.
    Mariani BD; Schimke RT
    J Biol Chem; 1984 Feb; 259(3):1901-10. PubMed ID: 6693439
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ultraviolet-sensitive syndrome cells are defective in transcription-coupled repair of cyclobutane pyrimidine dimers.
    Spivak G; Itoh T; Matsunaga T; Nikaido O; Hanawalt P; Yamaizumi M
    DNA Repair (Amst); 2002 Aug; 1(8):629-43. PubMed ID: 12509286
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Gene-specific DNA repair in xeroderma pigmentosum complementation groups A, C, D, and F. Relation to cellular survival and clinical features.
    Evans MK; Robbins JH; Ganges MB; Tarone RE; Nairn RS; Bohr VA
    J Biol Chem; 1993 Mar; 268(7):4839-47. PubMed ID: 8444862
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The replication timing of the amplified dihydrofolate reductase genes in the Chinese hamster ovary cell line CHOC 400.
    Caddle MS; Heintz NH
    Biochem Biophys Res Commun; 1990 Jul; 170(1):134-9. PubMed ID: 2372283
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Localization of dihydrofolate reductase amplified genes in Chinese hamster cells resistant to methotrexate].
    Mukhamedkhanova FS; Kuznetsova NN; Nuridzhaniants SS; Abdurkarimov AA
    Genetika; 1987 Sep; 23(9):1588-94. PubMed ID: 3692154
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Lack of sequence-specific removal of N-methylpurines from cellular DNA.
    Scicchitano DA; Hanawalt PC
    Mutat Res; 1990; 233(1-2):31-7. PubMed ID: 2233810
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Identification of an origin of bidirectional DNA replication in mammalian chromosomes.
    Burhans WC; Vassilev LT; Caddle MS; Heintz NH; DePamphilis ML
    Cell; 1990 Sep; 62(5):955-65. PubMed ID: 2393905
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Co-expression and amplification of dihydrofolate reductase cDNA and the Escherichia coli XGPRT gene in Chinese hamster ovary cells.
    Ringold G; Dieckmann B; Lee F
    J Mol Appl Genet; 1981; 1(3):165-75. PubMed ID: 6180118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.