These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 3023397)
1. The NH2 terminus of preproinsulin directs the translocation and glycosylation of a bacterial cytoplasmic protein by mammalian microsomal membranes. Eskridge EM; Shields D J Cell Biol; 1986 Dec; 103(6 Pt 1):2263-72. PubMed ID: 3023397 [TBL] [Abstract][Full Text] [Related]
2. Cell-free processing and segregation of insulin precursors. Eskridge EM; Shields D J Biol Chem; 1983 Oct; 258(19):11487-91. PubMed ID: 6352698 [TBL] [Abstract][Full Text] [Related]
3. Truncations of a secretory protein define minimum lengths required for binding to signal recognition particle and translocation across the endoplasmic reticulum membrane. Okun MM; Eskridge EM; Shields D J Biol Chem; 1990 May; 265(13):7478-84. PubMed ID: 2185250 [TBL] [Abstract][Full Text] [Related]
4. Translocation of preproinsulin across the endoplasmic reticulum membrane. The relationship between nascent polypeptide size and extent of signal recognition particle-mediated inhibition of protein synthesis. Okun MM; Shields D J Biol Chem; 1992 Jun; 267(16):11476-82. PubMed ID: 1317869 [TBL] [Abstract][Full Text] [Related]
5. Translational block to expression of the Escherichia coli Tn9-derived chloramphenicol-resistance gene in Bacillus subtilis. Goldfarb DS; Rodriguez RL; Doi RH Proc Natl Acad Sci U S A; 1982 Oct; 79(19):5886-90. PubMed ID: 6310552 [TBL] [Abstract][Full Text] [Related]
6. Demonstration of specific receptors of the rough endoplasmic membrane for the signal sequence of carp preproinsulin. Prehn S; Tsamaloukas A; Rapoport TA Eur J Biochem; 1980; 107(1):185-95. PubMed ID: 6249584 [TBL] [Abstract][Full Text] [Related]
7. NH2-terminal substitutions of basic amino acids induce translocation across the microsomal membrane and glycosylation of rabbit cytochrome P450IIC2. Szczesna-Skorupa E; Kemper B J Cell Biol; 1989 Apr; 108(4):1237-43. PubMed ID: 2494191 [TBL] [Abstract][Full Text] [Related]
8. Mutations in the NH2-terminal domain of the signal peptide of preproparathyroid hormone inhibit translocation without affecting interaction with signal recognition particle. Szczesna-Skorupa E; Mead DA; Kemper B J Biol Chem; 1987 Jun; 262(18):8896-900. PubMed ID: 3036835 [TBL] [Abstract][Full Text] [Related]
9. Cell-free synthesis of fish preproinsulin, and processing by heterologous mammalian microsomal membranes. Shields D; Blobel G Proc Natl Acad Sci U S A; 1977 May; 74(5):2059-63. PubMed ID: 325565 [TBL] [Abstract][Full Text] [Related]
10. Post-translational processing of anglerfish islet somatostatin precursors. Noe BD; Spiess J Adv Exp Med Biol; 1985; 188():123-40. PubMed ID: 2863927 [TBL] [Abstract][Full Text] [Related]
11. Positive charges at the NH2 terminus convert the membrane-anchor signal peptide of cytochrome P-450 to a secretory signal peptide. Szczesna-Skorupa E; Browne N; Mead D; Kemper B Proc Natl Acad Sci U S A; 1988 Feb; 85(3):738-42. PubMed ID: 3422456 [TBL] [Abstract][Full Text] [Related]
12. Four hydrophobic segments in the NH2-terminal third (H1-H4) of Na,K-ATPase alpha subunit alternately initiate and halt membrane translocation of the newly synthesized polypeptide. Xie Y; Morimoto T J Biol Chem; 1995 May; 270(20):11985-91. PubMed ID: 7744848 [TBL] [Abstract][Full Text] [Related]
13. Targeting of the hepatitis B virus precore protein to the endoplasmic reticulum membrane: after signal peptide cleavage translocation can be aborted and the product released into the cytoplasm. Garcia PD; Ou JH; Rutter WJ; Walter P J Cell Biol; 1988 Apr; 106(4):1093-104. PubMed ID: 3283145 [TBL] [Abstract][Full Text] [Related]
14. Cell-free biosynthesis of multiple preprosomatostatins: characterization by hybrid selection and amino-terminal sequencing. Warren TG; Shields D Biochemistry; 1984 Jun; 23(12):2684-90. PubMed ID: 6147156 [TBL] [Abstract][Full Text] [Related]
15. Internally transposed signal sequence of carp preproinsulin retains its functions with the signal recognition particle. Wiedmann M; Huth A; Rapoport TA FEBS Lett; 1986 Jan; 194(1):139-45. PubMed ID: 3000822 [TBL] [Abstract][Full Text] [Related]
16. Intracellular degradation of prohormone-chloramphenicol-acetyl-transferase chimeras in a pre-lysosomal compartment. Danoff A; Mai XP; Shields D Eur J Biochem; 1993 Dec; 218(3):1063-70. PubMed ID: 7904239 [TBL] [Abstract][Full Text] [Related]
17. Wild type and mutant signal peptides of Escherichia coli outer membrane lipoprotein interact with equal efficiency with mammalian signal recognition particle. Garcia PD; Ghrayeb J; Inouye M; Walter P J Biol Chem; 1987 Jul; 262(20):9463-8. PubMed ID: 3298258 [TBL] [Abstract][Full Text] [Related]
18. In vitro expression of a Tn9-derived chloramphenicol acetyltransferase gene fusion by using a Bacillus subtilis system. Zaghloul TI; Doi RH J Bacteriol; 1987 Mar; 169(3):1212-6. PubMed ID: 3102458 [TBL] [Abstract][Full Text] [Related]
19. Impact of altered protein structures on the intracellular traffic of a mutated vasopressin precursor from Brattleboro rats. Schmale H; Borowiak B; Holtgreve-Grez H; Richter D Eur J Biochem; 1989 Jul; 182(3):621-7. PubMed ID: 2502393 [TBL] [Abstract][Full Text] [Related]
20. Molecular dissection of the NH2-terminal signal/anchor sequence of rat dipeptidyl peptidase IV. Hong WJ; Doyle D J Cell Biol; 1990 Aug; 111(2):323-8. PubMed ID: 1974258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]