These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30234297)

  • 1. Surfaces/Interfaces Modification for Vacancies Enhancing Lithium Storage Capability of Cu
    Song H; Gong Y; Su J; Li Y; Li Y; Gu L; Wang C
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35137-35144. PubMed ID: 30234297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics, Adhesion, and Wetting at Li/Cu(-Oxide) Interfaces: Relevance for Anode-Free Lithium-Metal Batteries.
    Yoon JS; Liao DW; Greene SM; Cho TH; Dasgupta NP; Siegel DJ
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18790-18799. PubMed ID: 38587488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Step Catalytic Synthesis of CuO/Cu2O in a Graphitized Porous C Matrix Derived from the Cu-Based Metal-Organic Framework for Li- and Na-Ion Batteries.
    Kim AY; Kim MK; Cho K; Woo JY; Lee Y; Han SH; Byun D; Choi W; Lee JK
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19514-23. PubMed ID: 27398693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the role of Cl doping in the oxygen evolution reaction on cuprous oxide by DFT.
    Chen HH; Ji Y; Fan T
    Phys Chem Chem Phys; 2022 Oct; 24(41):25347-25355. PubMed ID: 36239135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing Hierarchical Assembly of Carbon-Coated TiO
    Ha JU; Lee J; Abbas MA; Lee MD; Lee J; Bang JH
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11391-11402. PubMed ID: 30829467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low Interface Energies Tune the Electrochemical Reversibility of Tin Oxide Composite Nanoframes as Lithium-Ion Battery Anodes.
    Zhang L; Pu J; Jiang Y; Shen Z; Li J; Liu J; Ma H; Niu J; Zhang H
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36892-36901. PubMed ID: 30295450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ atomic-scale imaging of the metal/oxide interfacial transformation.
    Zou L; Li J; Zakharov D; Stach EA; Zhou G
    Nat Commun; 2017 Aug; 8(1):307. PubMed ID: 28824169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The p-type conduction mechanism in Cu2O: a first principles study.
    Nolan M; Elliott SD
    Phys Chem Chem Phys; 2006 Dec; 8(45):5350-8. PubMed ID: 19810413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen vacancy rich Cu
    Lu L; Xu X; Yan J; Shi FN; Huo Y
    Dalton Trans; 2018 Feb; 47(6):2031-2038. PubMed ID: 29349461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Sodium-Site Doping on Enhancing the Lithium Storage Performance of Sodium Lithium Titanate.
    Wang P; Qian S; Yi TF; Yu H; Yan L; Li P; Lin X; Shui M; Shu J
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10302-14. PubMed ID: 27052633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical fabrication and characterization of Cu/Cu2O multi-layered micro and nanorods in Li-ion batteries.
    Rehnlund D; Valvo M; Tai CW; Ångström J; Sahlberg M; Edström K; Nyholm L
    Nanoscale; 2015 Aug; 7(32):13591-604. PubMed ID: 26206712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen vacancies enhance the lithium ion intercalation pseudocapacitive properties of orthorhombic niobium pentoxide.
    Zhang S; Liu G; Qiao W; Wang J; Ling L
    J Colloid Interface Sci; 2020 Mar; 562():193-203. PubMed ID: 31838355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of substitutional doping on Cu vacancy formation in Cu
    Beronio ERA; Colambo IR; Padama AAB
    Phys Chem Chem Phys; 2021 Apr; 23(14):8800-8808. PubMed ID: 33876039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anion Vacancies Regulating Endows MoSSe with Fast and Stable Potassium Ion Storage.
    He H; Huang D; Gan Q; Hao J; Liu S; Wu Z; Pang WK; Johannessen B; Tang Y; Luo JL; Wang H; Guo Z
    ACS Nano; 2019 Oct; 13(10):11843-11852. PubMed ID: 31545592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior-capacity binder-free anode electrode for lithium-ion batteries: Co
    Li Q; Feng Y; Wang P; Che R
    Nanoscale; 2019 Mar; 11(11):5080-5093. PubMed ID: 30839963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensively Understanding the Role of Anion Vacancies on K-Ion Storage: A Case Study of Se-Vacancy-Engineered VSe
    Sha D; You Y; Hu R; Cao X; Wei Y; Zhang H; Pan L; Sun Z
    Adv Mater; 2023 Apr; 35(15):e2211311. PubMed ID: 36661113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li0.2Ni0.2Mn0.6]O2.
    Luo K; Roberts MR; Guerrini N; Tapia-Ruiz N; Hao R; Massel F; Pickup DM; Ramos S; Liu YS; Guo J; Chadwick AV; Duda LC; Bruce PG
    J Am Chem Soc; 2016 Sep; 138(35):11211-8. PubMed ID: 27498756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium transport at silicon thin film: barrier for high-rate capability anode.
    Peng B; Cheng F; Tao Z; Chen J
    J Chem Phys; 2010 Jul; 133(3):034701. PubMed ID: 20649344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.