These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 30235144)
1. Biological Optical-to-Chemical Signal Conversion Interface: A Small-Scale Modulator for Molecular Communications. Grebenstein L; Kirchner J; Peixoto RS; Zimmermann W; Irnstorfer F; Wicke W; Ahmadzadeh A; Jamali V; Fischer G; Weigel R; Burkovski A; Schober R IEEE Trans Nanobioscience; 2019 Jan; 18(1):31-42. PubMed ID: 30235144 [TBL] [Abstract][Full Text] [Related]
2. Low-Complexity Adaptive Signal Detection for Mobile Molecular Communication. Mu X; Yan H; Li B; Liu M; Zheng R; Li Y; Lin L IEEE Trans Nanobioscience; 2020 Apr; 19(2):237-248. PubMed ID: 31944963 [TBL] [Abstract][Full Text] [Related]
3. The Asymmetric-Distance Metrics for Decoding of Convolutional Codes in Diffusion-Based Molecular Communications. Li Q IEEE Trans Nanobioscience; 2019 Jul; 18(3):469-481. PubMed ID: 31071051 [TBL] [Abstract][Full Text] [Related]
4. Thresholdless Detection of Symbols in Nano-Communication Systems. Sharma S; Deka K; Bhatia V IEEE Trans Nanobioscience; 2020 Apr; 19(2):259-266. PubMed ID: 31796412 [TBL] [Abstract][Full Text] [Related]
5. Symbol Synchronization for Diffusion-Based Molecular Communications. Jamali V; Ahmadzadeh A; Schober R IEEE Trans Nanobioscience; 2017 Dec; 16(8):873-887. PubMed ID: 29364131 [TBL] [Abstract][Full Text] [Related]
6. Ion Channel Based Bio-Synthetic Modulator for Diffusive Molecular Communication. Arjmandi H; Ahmadzadeh A; Schober R; Nasiri Kenari M IEEE Trans Nanobioscience; 2016 Jul; 15(5):418-432. PubMed ID: 27116747 [TBL] [Abstract][Full Text] [Related]
7. Improving adaptive receivers performance in molecular communication via diffusion. Shahbazi A; Jamshidi A IET Nanobiotechnol; 2019 Jun; 13(4):441-448. PubMed ID: 31171750 [TBL] [Abstract][Full Text] [Related]
8. Cooperative Abnormality Detection via Diffusive Molecular Communications. Mosayebi R; Jamali V; Ghoroghchian N; Schober R; Nasiri-Kenari M; Mehrabi M IEEE Trans Nanobioscience; 2017 Dec; 16(8):828-842. PubMed ID: 29364127 [TBL] [Abstract][Full Text] [Related]
9. A Novel Time-Based Modulation Scheme in Time-Asynchronous Channels for Molecular Communications. Li Q IEEE Trans Nanobioscience; 2020 Jan; 19(1):59-67. PubMed ID: 31675338 [TBL] [Abstract][Full Text] [Related]
10. Low-Complexity Noncoherent Signal Detection for Nanoscale Molecular Communications. Li B; Sun M; Wang S; Guo W; Zhao C IEEE Trans Nanobioscience; 2016 Jan; 15(1):3-10. PubMed ID: 26685259 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Non-Coherent Signal Detection Techniques for Mobile Molecular Communication. Yu W; Liu F; Yan H; Lin L IEEE Trans Nanobioscience; 2023 Apr; 22(2):356-364. PubMed ID: 35877803 [TBL] [Abstract][Full Text] [Related]
12. Adaptive Detection and ISI Mitigation for Mobile Molecular Communication. Chang G; Lin L; Yan H IEEE Trans Nanobioscience; 2018 Mar; 17(1):21-35. PubMed ID: 29570072 [TBL] [Abstract][Full Text] [Related]
13. Statistical Analysis of Received Signal and Error Performance for Mobile Molecular Communication. Huang S; Lin L; Yan H; Xu J; Liu F IEEE Trans Nanobioscience; 2019 Jul; 18(3):415-427. PubMed ID: 30932843 [TBL] [Abstract][Full Text] [Related]
14. ISI-mitigating modulation scheme using ion reaction for molecular communications. Jing D; Li Y; Hang R; Wu Z; Zhang H IET Nanobiotechnol; 2019 Sep; 13(7):674-681. PubMed ID: 31573535 [TBL] [Abstract][Full Text] [Related]
15. Modeling of photocurrent kinetics upon pulsed photoexcitation of photosynthetic proteins: a case of bacteriorhodopsin. Kuo CL; Chu LK Bioelectrochemistry; 2014 Oct; 99():1-7. PubMed ID: 24935522 [TBL] [Abstract][Full Text] [Related]
16. The Clock-Free Asynchronous Receiver Design for Molecular Timing Channels in Diffusion-Based Molecular Communications. Li Q IEEE Trans Nanobioscience; 2019 Oct; 18(4):585-596. PubMed ID: 31199266 [TBL] [Abstract][Full Text] [Related]
17. FTIR spectroscopy of a light-driven compatible sodium ion-proton pumping rhodopsin at 77 K. Ono H; Inoue K; Abe-Yoshizumi R; Kandori H J Phys Chem B; 2014 May; 118(18):4784-92. PubMed ID: 24773264 [TBL] [Abstract][Full Text] [Related]
18. Conversion of bacteriorhodopsin into a chloride ion pump. Sasaki J; Brown LS; Chon YS; Kandori H; Maeda A; Needleman R; Lanyi JK Science; 1995 Jul; 269(5220):73-5. PubMed ID: 7604281 [TBL] [Abstract][Full Text] [Related]
19. A light-driven proton pump from Haloterrigena turkmenica: functional expression in Escherichia coli membrane and coupling with a H+ co-transporter. Kamo N; Hashiba T; Kikukawa T; Araiso T; Ihara K; Nara T Biochem Biophys Res Commun; 2006 Mar; 341(2):285-90. PubMed ID: 16413498 [TBL] [Abstract][Full Text] [Related]