These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
554 related articles for article (PubMed ID: 30235165)
1. A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms. Sodmann P; Vollmer M; Nath N; Kaderali L Physiol Meas; 2018 Oct; 39(10):104005. PubMed ID: 30235165 [TBL] [Abstract][Full Text] [Related]
2. Ranking of the most reliable beat morphology and heart rate variability features for the detection of atrial fibrillation in short single-lead ECG. Christov I; Krasteva V; Simova I; Neycheva T; Schmid R Physiol Meas; 2018 Sep; 39(9):094005. PubMed ID: 30102603 [TBL] [Abstract][Full Text] [Related]
3. Parallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECG. Plesinger F; Nejedly P; Viscor I; Halamek J; Jurak P Physiol Meas; 2018 Sep; 39(9):094002. PubMed ID: 30102251 [TBL] [Abstract][Full Text] [Related]
4. A Comprehensive Study of Complexity and Performance of Automatic Detection of Atrial Fibrillation: Classification of Long ECG Recordings Based on the PhysioNet Computing in Cardiology Challenge 2017. Kleyko D; Osipov E; Wiklund U Biomed Phys Eng Express; 2020 Feb; 6(2):025010. PubMed ID: 33438636 [TBL] [Abstract][Full Text] [Related]
5. ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network. Xiong Z; Nash MP; Cheng E; Fedorov VV; Stiles MK; Zhao J Physiol Meas; 2018 Sep; 39(9):094006. PubMed ID: 30102248 [TBL] [Abstract][Full Text] [Related]
6. Detection of atrial fibrillation from ECG recordings using decision tree ensemble with multi-level features. Shao M; Bin G; Wu S; Bin G; Huang J; Zhou Z Physiol Meas; 2018 Sep; 39(9):094008. PubMed ID: 30187894 [TBL] [Abstract][Full Text] [Related]
7. Analyzing single-lead short ECG recordings using dense convolutional neural networks and feature-based post-processing to detect atrial fibrillation. Parvaneh S; Rubin J; Rahman A; Conroy B; Babaeizadeh S Physiol Meas; 2018 Aug; 39(8):084003. PubMed ID: 30044235 [TBL] [Abstract][Full Text] [Related]
8. Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings. Rubin J; Parvaneh S; Rahman A; Conroy B; Babaeizadeh S J Electrocardiol; 2018; 51(6S):S18-S21. PubMed ID: 30122456 [TBL] [Abstract][Full Text] [Related]
9. Atrioventricular Synchronization for Detection of Atrial Fibrillation and Flutter in One to Twelve ECG Leads Using a Dense Neural Network Classifier. Jekova I; Christov I; Krasteva V Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015834 [TBL] [Abstract][Full Text] [Related]
10. Classification of short single-lead electrocardiograms (ECGs) for atrial fibrillation detection using piecewise linear spline and XGBoost. Chen Y; Wang X; Jung Y; Abedi V; Zand R; Bikak M; Adibuzzaman M Physiol Meas; 2018 Oct; 39(10):104006. PubMed ID: 30183685 [TBL] [Abstract][Full Text] [Related]
11. A deep convolutional neural network model to classify heartbeats. Acharya UR; Oh SL; Hagiwara Y; Tan JH; Adam M; Gertych A; Tan RS Comput Biol Med; 2017 Oct; 89():389-396. PubMed ID: 28869899 [TBL] [Abstract][Full Text] [Related]
12. An SVM approach for identifying atrial fibrillation. Gliner V; Yaniv Y Physiol Meas; 2018 Sep; 39(9):094007. PubMed ID: 30187892 [TBL] [Abstract][Full Text] [Related]
13. Detection of atrial fibrillation and other abnormal rhythms from ECG using a multi-layer classifier architecture. Mukherjee A; Dutta Choudhury A; Datta S; Puri C; Banerjee R; Singh R; Ukil A; Bandyopadhyay S; Pal A; Khandelwal S Physiol Meas; 2019 Jun; 40(5):054006. PubMed ID: 30650387 [TBL] [Abstract][Full Text] [Related]
14. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Yıldırım Ö; Pławiak P; Tan RS; Acharya UR Comput Biol Med; 2018 Nov; 102():411-420. PubMed ID: 30245122 [TBL] [Abstract][Full Text] [Related]
15. A support vector machine approach for AF classification from a short single-lead ECG recording. Liu N; Sun M; Wang L; Zhou W; Dang H; Zhou X Physiol Meas; 2018 Jun; 39(6):064004. PubMed ID: 29794340 [TBL] [Abstract][Full Text] [Related]
16. Delineation of 12-Lead ECG Representative Beats Using Convolutional Encoder-Decoders with Residual and Recurrent Connections. Krasteva V; Stoyanov T; Schmid R; Jekova I Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066042 [TBL] [Abstract][Full Text] [Related]
17. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Attia ZI; Noseworthy PA; Lopez-Jimenez F; Asirvatham SJ; Deshmukh AJ; Gersh BJ; Carter RE; Yao X; Rabinstein AA; Erickson BJ; Kapa S; Friedman PA Lancet; 2019 Sep; 394(10201):861-867. PubMed ID: 31378392 [TBL] [Abstract][Full Text] [Related]
18. A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using single lead electrocardiograms of variable length. Kamaleswaran R; Mahajan R; Akbilgic O Physiol Meas; 2018 Mar; 39(3):035006. PubMed ID: 29369044 [TBL] [Abstract][Full Text] [Related]
19. Ensembling convolutional and long short-term memory networks for electrocardiogram arrhythmia detection. Warrick PA; Nabhan Homsi M Physiol Meas; 2018 Oct; 39(11):114002. PubMed ID: 30010088 [TBL] [Abstract][Full Text] [Related]
20. ECG-Based Classification of Resuscitation Cardiac Rhythms for Retrospective Data Analysis. Rad AB; Eftestol T; Engan K; Irusta U; Kvaloy JT; Kramer-Johansen J; Wik L; Katsaggelos AK IEEE Trans Biomed Eng; 2017 Oct; 64(10):2411-2418. PubMed ID: 28371771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]