These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

554 related articles for article (PubMed ID: 30235165)

  • 21. Transfer Learning in ECG Classification from Human to Horse Using a Novel Parallel Neural Network Architecture.
    Van Steenkiste G; van Loon G; Crevecoeur G
    Sci Rep; 2020 Jan; 10(1):186. PubMed ID: 31932667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A filter approach for feature selection in classification: application to automatic atrial fibrillation detection in electrocardiogram recordings.
    Michel P; Ngo N; Pons JF; Delliaux S; Giorgi R
    BMC Med Inform Decis Mak; 2021 May; 21(Suppl 4):130. PubMed ID: 33947379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From sleep patterns to heart rhythm: Predicting atrial fibrillation from overnight polysomnograms.
    Koscova Z; Rad AB; Nasiri S; Reyna MA; Sameni R; Trotti LM; Sun H; Turley N; Stone KL; Thomas RJ; Mignot E; Westover B; Clifford GD
    J Electrocardiol; 2024; 86():153759. PubMed ID: 39067281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detecting atrial fibrillation by deep convolutional neural networks.
    Xia Y; Wulan N; Wang K; Zhang H
    Comput Biol Med; 2018 Feb; 93():84-92. PubMed ID: 29291535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Classification of cardiac rhythm using heart rate dynamical measures: validation in MIT-BIH databases.
    Carrara M; Carozzi L; Moss TJ; de Pasquale M; Cerutti S; Lake DE; Moorman JR; Ferrario M
    J Electrocardiol; 2015; 48(6):943-6. PubMed ID: 26320371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel method for detection of the transition between atrial fibrillation and sinus rhythm.
    Huang C; Ye S; Chen H; Li D; He F; Tu Y
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1113-9. PubMed ID: 21134807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ECG signal classification based on deep CNN and BiLSTM.
    Cheng J; Zou Q; Zhao Y
    BMC Med Inform Decis Mak; 2021 Dec; 21(1):365. PubMed ID: 34963455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats.
    Oh SL; Ng EYK; Tan RS; Acharya UR
    Comput Biol Med; 2018 Nov; 102():278-287. PubMed ID: 29903630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atrial Fibrillation Detection with Low Signal-to-Noise Ratio Data Using Artificial Features and Abstract Features.
    Bao Z; Li D; Jiang S; Zhang L; Zhang Y
    J Healthc Eng; 2023; 2023():3269144. PubMed ID: 36718172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finding events of electrocardiogram and arterial blood pressure signals via discrete wavelet transform with modified scales.
    Ghaffari A; Homaeinezhad MR; Akraminia M; Davaeeha M
    Proc Inst Mech Eng H; 2010; 224(1):27-42. PubMed ID: 20225455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features.
    Inan OT; Giovangrandi L; Kovacs GT
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2507-15. PubMed ID: 17153208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A wavelet-based ECG delineator: evaluation on standard databases.
    Martínez JP; Almeida R; Olmos S; Rocha AP; Laguna P
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):570-81. PubMed ID: 15072211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heart beat detection using a multimodal data coupling method.
    Mollakazemi MJ; Atyabi SA; Ghaffari A
    Physiol Meas; 2015 Aug; 36(8):1729-42. PubMed ID: 26218667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atrial Fibrillation Classification with Smart Wearables Using Short-Term Heart Rate Variability and Deep Convolutional Neural Networks.
    Ramesh J; Solatidehkordi Z; Aburukba R; Sagahyroon A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detecting atrial fibrillation from short single lead ECGs using statistical and morphological features.
    Athif M; Yasawardene PC; Daluwatte C
    Physiol Meas; 2018 Jun; 39(6):064002. PubMed ID: 29767635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss.
    Romdhane TF; Alhichri H; Ouni R; Atri M
    Comput Biol Med; 2020 Aug; 123():103866. PubMed ID: 32658786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Abductive reasoning as a basis to reproduce expert criteria in ECG atrial fibrillation identification.
    Teijeiro T; García CA; Castro D; Félix P
    Physiol Meas; 2018 Aug; 39(8):084006. PubMed ID: 30074904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ECG classification via integration of adaptive beat segmentation and relative heart rate with deep learning networks.
    Lim J; Han D; Pirayesh Shirazi Nejad M; Chon KH
    Comput Biol Med; 2024 Oct; 181():109062. PubMed ID: 39205344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal.
    Ebrahimzadeh E; Kalantari M; Joulani M; Shahraki RS; Fayaz F; Ahmadi F
    Comput Methods Programs Biomed; 2018 Oct; 165():53-67. PubMed ID: 30337081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time-varying coherence function for atrial fibrillation detection.
    Lee J; Nam Y; McManus DD; Chon KH
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2783-93. PubMed ID: 23708769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.