These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 30235202)

  • 1. Transition state characteristics during cell differentiation.
    Brackston RD; Lakatos E; Stumpf MPH
    PLoS Comput Biol; 2018 Sep; 14(9):e1006405. PubMed ID: 30235202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deterministic map of Waddington's epigenetic landscape for cell fate specification.
    Bhattacharya S; Zhang Q; Andersen ME
    BMC Syst Biol; 2011 May; 5():85. PubMed ID: 21619617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Monte Carlo method for in silico modeling and visualization of Waddington's epigenetic landscape with intermediate details.
    Zhang X; Chong KH; Zhu L; Zheng J
    Biosystems; 2020 Dec; 198():104275. PubMed ID: 33080349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition states and cell fate decisions in epigenetic landscapes.
    Moris N; Pina C; Arias AM
    Nat Rev Genet; 2016 Nov; 17(11):693-703. PubMed ID: 27616569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel generic models for differentiating stem cells reveal oscillatory mechanisms.
    Farjami S; Camargo Sosa K; Dawes JHP; Kelsh RN; Rocco A
    J R Soc Interface; 2021 Oct; 18(183):20210442. PubMed ID: 34610261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From understanding the development landscape of the canonical fate-switch pair to constructing a dynamic landscape for two-step neural differentiation.
    Qiu X; Ding S; Shi T
    PLoS One; 2012 Dec; 7(12):e49271. PubMed ID: 23300518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An enriched network motif family regulates multistep cell fate transitions with restricted reversibility.
    Ye Y; Kang X; Bailey J; Li C; Hong T
    PLoS Comput Biol; 2019 Mar; 15(3):e1006855. PubMed ID: 30845219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative stability of network states in Boolean network models of gene regulation in development.
    Zhou JX; Samal A; d'Hérouël AF; Price ND; Huang S
    Biosystems; 2016; 142-143():15-24. PubMed ID: 26965665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation.
    Wang J; Xu L; Wang E; Huang S
    Biophys J; 2010 Jul; 99(1):29-39. PubMed ID: 20655830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NetLand: quantitative modeling and visualization of Waddington's epigenetic landscape using probabilistic potential.
    Guo J; Lin F; Zhang X; Tanavde V; Zheng J
    Bioinformatics; 2017 May; 33(10):1583-1585. PubMed ID: 28108450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stem cell differentiation as a many-body problem.
    Zhang B; Wolynes PG
    Proc Natl Acad Sci U S A; 2014 Jul; 111(28):10185-90. PubMed ID: 24946805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic identification of cell-fate regulatory programs using a single-cell atlas of mouse development.
    Fei L; Chen H; Ma L; E W; Wang R; Fang X; Zhou Z; Sun H; Wang J; Jiang M; Wang X; Yu C; Mei Y; Jia D; Zhang T; Han X; Guo G
    Nat Genet; 2022 Jul; 54(7):1051-1061. PubMed ID: 35817981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Modelling of the Waddington Epigenetic Landscape.
    Taherian Fard A; Ragan MA
    Methods Mol Biol; 2019; 1975():157-171. PubMed ID: 31062309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model of stem cell regeneration with epigenetic state transitions.
    Situ Q; Lei J
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1379-1397. PubMed ID: 29161866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Cellular Differentiation and Reprogramming with Gene Regulatory Networks.
    Hartmann A; Ravichandran S; Del Sol A
    Methods Mol Biol; 2019; 1975():37-51. PubMed ID: 31062304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies.
    Ladewig J; Koch P; Brüstle O
    Nat Rev Mol Cell Biol; 2013 Apr; 14(4):225-36. PubMed ID: 23847783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A geometrical perspective on development.
    Raju A; Siggia ED
    Dev Growth Differ; 2023 Jun; 65(5):245-254. PubMed ID: 37190845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise distorts the epigenetic landscape and shapes cell-fate decisions.
    Coomer MA; Ham L; Stumpf MPH
    Cell Syst; 2022 Jan; 13(1):83-102.e6. PubMed ID: 34626539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths.
    Li C; Wang J
    PLoS Comput Biol; 2013; 9(8):e1003165. PubMed ID: 23935477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reshaping the epigenetic landscape during early flower development: induction of attractor transitions by relative differences in gene decay rates.
    Davila-Velderrain J; Villarreal C; Alvarez-Buylla ER
    BMC Syst Biol; 2015 May; 9():20. PubMed ID: 25967891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.