These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30235500)

  • 21. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime.
    Misra AK; Sharma SK; Acosta TE; Porter JN; Bates DE
    Appl Spectrosc; 2012 Nov; 66(11):1279-85. PubMed ID: 23146183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-resolution, broad-spectral-range Raman measurement using a spatial heterodyne spectrometer with separate filters and multi-gratings.
    Chu Q; Sun Y; Yu S; Sun C; Jirigalantu ; Song N; Li F; Li X; Bayanheshig
    Opt Express; 2024 May; 32(10):17667-17688. PubMed ID: 38858944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Standoff ultracompact micro-Raman sensor for planetary surface explorations.
    Abedin MN; Bradley AT; Misra AK; Bai Y; Hines GD; Sharma SK
    Appl Opt; 2018 Jan; 57(1):62-68. PubMed ID: 29328119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep-Ultraviolet Raman Measurements Using a Spatial Heterodyne Raman Spectrometer (SHRS).
    Lamsal N; Angel SM
    Appl Spectrosc; 2015 May; 69(5):525-34. PubMed ID: 25811967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Standoff Laser-Induced Breakdown Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics.
    Barnett PD; Lamsal N; Angel SM
    Appl Spectrosc; 2017 Apr; 71(4):583-590. PubMed ID: 28103051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Half-Inch Monolithic Spatial Heterodyne Raman Spectrometer: A Study of Polarized Raman Spectra of Organic Liquids and Instrumental Performance.
    Kelly EM; Egan MJ; Colόn A; Angel SM; Sharma SK
    Appl Spectrosc; 2024 Oct; 78(10):1062-1070. PubMed ID: 38853620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Shot Standoff Hyperspectral Raman Imaging of a Chemical Warfare Agent Simulant.
    Anderson BR; Eilers H
    Appl Spectrosc; 2024 Nov; 78(11):1183-1190. PubMed ID: 38835219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. "Standoff Biofinder" for Fast, Noncontact, Nondestructive, Large-Area Detection of Biological Materials for Planetary Exploration.
    Misra AK; Acosta-Maeda TE; Sharma SK; McKay CP; Gasda PJ; Taylor GJ; Lucey PG; Flynn L; Abedin MN; Clegg SM; Wiens R
    Astrobiology; 2016 Sep; 16(9):715-29. PubMed ID: 27623200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Remote Raman measurements of minerals, organics, and inorganics at 430  m range.
    Acosta-Maeda TE; Misra AK; Muzangwa LG; Berlanga G; Muchow D; Porter J; Sharma SK
    Appl Opt; 2016 Dec; 55(36):10283-10289. PubMed ID: 28059247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultraviolet Stand-off Raman Measurements Using a Gated Spatial Heterodyne Raman Spectrometer.
    Lamsal N; Sharma SK; Acosta TE; Angel SM
    Appl Spectrosc; 2016 Apr; 70(4):666-75. PubMed ID: 26883731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of handheld and portable Raman spectrometers with different laser excitation wavelengths for the detection and characterization of organic minerals.
    Košek F; Culka A; Rousaki A; Vandenabeele P; Jehlička J
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Dec; 243():118818. PubMed ID: 32862060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of microplastics based on spatial heterodyne Raman spectroscopy.
    Xue Q; Wang N; Yang H; Yang J; Bai H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 283():121712. PubMed ID: 35952588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stand-off Raman spectroscopic detection of minerals on planetary surfaces.
    Sharma SK; Lucey PG; Ghosh M; Hubble HW; Horton KA
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Aug; 59(10):2391-407. PubMed ID: 12909150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Remote Raman Efficiencies and Cross-Sections of Organic and Inorganic Chemicals.
    Acosta-Maeda TE; Misra AK; Porter JN; Bates DE; Sharma SK
    Appl Spectrosc; 2017 May; 71(5):1025-1038. PubMed ID: 27645726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Standoff Detection System Using Raman Spectroscopy in the Deep-Ultraviolet Wavelength Region for the Detection of Hazardous Gas.
    Eto S; Ichikawa Y; Ogita M; Sugimoto S; Asahi I
    Appl Spectrosc; 2022 Oct; 76(10):1246-1253. PubMed ID: 35354330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New trends in telescopic remote Raman spectroscopic instrumentation.
    Sharma SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of microplastics via a confocal-microscope spatial-heterodyne Raman spectrometer with echelle gratings.
    Li F; Song N; Li X; Jirigalantu ; Mi X; Sun C; Sun Y; Feng S; Wang G; Qiu J; Bayanheshig
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 313():124099. PubMed ID: 38513421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Standoff spectroscopy of surface adsorbed chemicals.
    Van Neste CW; Senesac LR; Thundat T
    Anal Chem; 2009 Mar; 81(5):1952-6. PubMed ID: 19186935
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vibrational spectroscopy standoff detection of explosives.
    Pacheco-Londoño LC; Ortiz-Rivera W; Primera-Pedrozo OM; Hernández-Rivera SP
    Anal Bioanal Chem; 2009 Sep; 395(2):323-35. PubMed ID: 19633965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Standoff Deep Ultraviolet Raman Spectrometer for Trace Detection.
    Bykov SV; Asher SA
    Appl Spectrosc; 2024 Feb; 78(2):227-242. PubMed ID: 38204400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.