These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30235596)

  • 21. Response of invertebrates from the hyporheic zone of chalk rivers to eutrophication and land use.
    Pacioglu O; Moldovan OT
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4729-40. PubMed ID: 26531711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.
    Conant B; Cherry JA; Gillham RW
    J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas.
    Murgulet D; Murgulet V; Spalt N; Douglas A; Hay RG
    Sci Total Environ; 2016 Dec; 572():595-607. PubMed ID: 27620959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water and heat exchange responses to flooding and local storm events in the hyporheic zone driven by a meandering bend.
    Ren J; Hu H; Lu X; Yu R
    Sci Total Environ; 2023 Jul; 883():163732. PubMed ID: 37116799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of toxicity within different compartments of a peri-urban river subject to combined sewer overflow discharges.
    Becouze-Lareure C; Thiebaud L; Bazin C; Namour P; Breil P; Perrodin Y
    Sci Total Environ; 2016 Jan; 539():503-514. PubMed ID: 26379263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Convergence of Groundwater Discharge through the Hyporheic Zone of Streams.
    Mojarrad BB; Wörman A; Riml J; Xu S
    Ground Water; 2023 Jan; 61(1):66-85. PubMed ID: 35984214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of heat transport across sediment deposited hyporheic zone inside reservoirs following hydropower production.
    Shi W; Chen Y; Chen Q; Liu D
    Sci Total Environ; 2020 Mar; 707():135611. PubMed ID: 31771842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconceptualizing the hyporheic zone for nonperennial rivers and streams.
    DelVecchia AG; Shanafield M; Zimmer MA; Busch MH; Krabbenhoft CA; Stubbington R; Kaiser KE; Burrows RM; Hosen J; Datry T; Kampf SK; Zipper SC; Fritz K; Costigan K; Allen DC
    Freshw Sci; 2022 Apr; 41(2):167-182. PubMed ID: 35846249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of river morphology, hydraulic gradients, and sediment deposition on water exchange and oxygen dynamics in salmonid redds.
    Schindler Wildhaber Y; Michel C; Epting J; Wildhaber RA; Huber E; Huggenberger P; Burkhardt-Holm P; Alewell C
    Sci Total Environ; 2014 Feb; 470-471():488-500. PubMed ID: 24176696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession.
    Malzone JM; Lowry CS
    Ground Water; 2015; 53(2):217-26. PubMed ID: 24684212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A dataset on physico-chemical hyporheic variables in the Selune River: Towards understanding the impact of dam removal on riverbed clogging processes.
    Ba MM; Heyman J; Rivière A; Soulayrol MO; Stubbe V; Meric F; Kergosien B; Rolland P; Petton C; Lavenant N; Kermarrec JJ; Crave A
    Data Brief; 2023 Feb; 46():108837. PubMed ID: 36591382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying urban river-aquifer fluid exchange processes: a multi-scale problem.
    Ellis PA; Mackay R; Rivett MO
    J Contam Hydrol; 2007 Apr; 91(1-2):58-80. PubMed ID: 17182151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining pyrosequencing and isotopic approaches to assess denitrification in a hyporheic zone.
    Kim H; Kaown D; Mayer B; Lee JY; Lee KK
    Sci Total Environ; 2018 Aug; 631-632():755-764. PubMed ID: 29544179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The hyporheic zone and its functions: revision and research status in Neotropical regions.
    Mugnai R; Messana G; Di Lorenzo T
    Braz J Biol; 2015 Aug; 75(3):524-34. PubMed ID: 26421769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hyporheic Exchange Controls Fate of Trace Organic Compounds in an Urban Stream.
    Schaper JL; Posselt M; McCallum JL; Banks EW; Hoehne A; Meinikmann K; Shanafield MA; Batelaan O; Lewandowski J
    Environ Sci Technol; 2018 Nov; 52(21):12285-12294. PubMed ID: 30293423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding water column and streambed thermal refugia for endangered mussels in the Delaware River.
    Briggs MA; Voytek EB; Day-Lewis FD; Rosenberry DO; Lane JW
    Environ Sci Technol; 2013 Oct; 47(20):11423-31. PubMed ID: 24015908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitivity of Simulated Hyporheic Exchange to River Bathymetry: The Steinlach River Test Site.
    Chow R; Wu H; Bennett JP; Dugge J; Wöhling T; Nowak W
    Ground Water; 2019 May; 57(3):378-391. PubMed ID: 30069873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal Hyporheic Zone Response to Water Table Fluctuations.
    Malzone JM; Anseeuw SK; Lowry CS; Allen-King R
    Ground Water; 2016 Mar; 54(2):274-85. PubMed ID: 26096382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MTBE, TBA, and TAME attenuation in diverse hyporheic zones.
    Landmeyer JE; Bradley PM; Trego DA; Hale KG; Haas JE
    Ground Water; 2010; 48(1):30-41. PubMed ID: 19664047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative information from thermal infrared imagery via unoccupied aerial vehicle informs simulations and spatially-distributed assessments of stream temperature.
    Caldwell SH; Kelleher C; Baker EA; Lautz LK
    Sci Total Environ; 2019 Apr; 661():364-374. PubMed ID: 30677682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.