These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 30235649)
1. Redistribution of methane emission hot spots under drawdown conditions. Hilgert S; Scapulatempo Fernandes CV; Fuchs S Sci Total Environ; 2019 Jan; 646():958-971. PubMed ID: 30235649 [TBL] [Abstract][Full Text] [Related]
2. Size does matter: importance of large bubbles and small-scale hot spots for methane transport. DelSontro T; McGinnis DF; Wehrli B; Ostrovsky I Environ Sci Technol; 2015 Feb; 49(3):1268-76. PubMed ID: 25551318 [TBL] [Abstract][Full Text] [Related]
3. Importance of sediment organic matter to methane ebullition in a sub-tropical freshwater reservoir. Grinham A; Dunbabin M; Albert S Sci Total Environ; 2018 Apr; 621():1199-1207. PubMed ID: 29054653 [TBL] [Abstract][Full Text] [Related]
4. Spatial heterogeneity of methane ebullition in a large tropical reservoir. DelSontro T; Kunz MJ; Kempter T; Wüest A; Wehrli B; Senn DB Environ Sci Technol; 2011 Dec; 45(23):9866-73. PubMed ID: 21985534 [TBL] [Abstract][Full Text] [Related]
5. Spatial and temporal variability of methane emissions from cascading reservoirs in the Upper Mekong River. Liu L; Yang ZJ; Delwiche K; Long LH; Liu J; Liu DF; Wang CF; Bodmer P; Lorke A Water Res; 2020 Nov; 186():116319. PubMed ID: 32846383 [TBL] [Abstract][Full Text] [Related]
6. Effects of an Experimental Water-level Drawdown on Methane Emissions from a Eutrophic Reservoir. Beaulieu JJ; Balz DA; Birchfield MK; Harrison JA; Nietch CT; Platz MC; Squier WC; Waldo S; Walker JT; White KM; Young JL Ecosystems; 2018; 21(4):657-674. PubMed ID: 31007569 [TBL] [Abstract][Full Text] [Related]
7. Reservoir Water-Level Drawdowns Accelerate and Amplify Methane Emission. Harrison JA; Deemer BR; Birchfield MK; O'Malley MT Environ Sci Technol; 2017 Feb; 51(3):1267-1277. PubMed ID: 28068068 [TBL] [Abstract][Full Text] [Related]
8. Bioturbation frequency alters methane emissions from reservoir sediments. Booth MT; Urbanic M; Wang X; Beaulieu JJ Sci Total Environ; 2021 Oct; 789():148033. PubMed ID: 34323816 [TBL] [Abstract][Full Text] [Related]
9. Conjunctive use of in situ gas sampling and chromatography with geospatial analysis to estimate greenhouse gas emissions of a large Amazonian hydroelectric reservoir. de Sousa Brandão IL; Mannaerts CM; de Sousa Brandão IW; Queiroz JCB; Verhoef W; Fonseca Saraiva AC; Dantas Filho HA Sci Total Environ; 2019 Feb; 650(Pt 1):394-407. PubMed ID: 30199684 [TBL] [Abstract][Full Text] [Related]
10. High-frequency measurements of gas ebullition in a Brazilian subtropical reservoir-identification of relevant triggers and seasonal patterns. Marcon L; Bleninger T; Männich M; Hilgert S Environ Monit Assess; 2019 May; 191(6):357. PubMed ID: 31073645 [TBL] [Abstract][Full Text] [Related]
11. Sediment trapping by dams creates methane emission hot spots. Maeck A; Delsontro T; McGinnis DF; Fischer H; Flury S; Schmidt M; Fietzek P; Lorke A Environ Sci Technol; 2013 Aug; 47(15):8130-7. PubMed ID: 23799866 [TBL] [Abstract][Full Text] [Related]
12. Carbon emission from global hydroelectric reservoirs revisited. Li S; Zhang Q Environ Sci Pollut Res Int; 2014 Dec; 21(23):13636-41. PubMed ID: 24943886 [TBL] [Abstract][Full Text] [Related]
13. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions. Miller BL; Arntzen EV; Goldman AE; Richmond MC Environ Manage; 2017 Oct; 60(4):615-629. PubMed ID: 28733708 [TBL] [Abstract][Full Text] [Related]
14. Methane dynamics and thermal response in impoundments of the Rhine River, Germany. Wilkinson J; Bodmer P; Lorke A Sci Total Environ; 2019 Apr; 659():1045-1057. PubMed ID: 31096320 [TBL] [Abstract][Full Text] [Related]
15. Sediment respiration dynamics and its contribution to carbon emissions in stratified reservoirs. Gao X; Zhang Y; Sun B; Liu X J Environ Manage; 2024 Jan; 349():119472. PubMed ID: 37939472 [TBL] [Abstract][Full Text] [Related]
16. Methane and carbon dioxide emissions from inland waters in India - implications for large scale greenhouse gas balances. Panneer Selvam B; Natchimuthu S; Arunachalam L; Bastviken D Glob Chang Biol; 2014 Nov; 20(11):3397-407. PubMed ID: 24623552 [TBL] [Abstract][Full Text] [Related]
17. Temporal trends in methane emissions from a small eutrophic reservoir: the key role of a spring burst. Waldo S; Beaulieu JJ; Barnett W; Balz DA; Vanni MJ; Williamson T; Walker JT Biogeosciences; 2021 Sep; 18(19):5291-5311. PubMed ID: 35126532 [TBL] [Abstract][Full Text] [Related]
18. A method for the assessment of long-term changes in carbon stock by construction of a hydropower reservoir. Bernardo JWY; Mannich M; Hilgert S; Fernandes CVS; Bleninger T Ambio; 2017 Sep; 46(5):566-577. PubMed ID: 28074404 [TBL] [Abstract][Full Text] [Related]
19. Exploring the temporal dynamics of methane ebullition in a subtropical freshwater reservoir. Marcon L; Bleninger T; Männich M; Ishikawa M; Hilgert S; Lorke A PLoS One; 2024; 19(3):e0298186. PubMed ID: 38536896 [TBL] [Abstract][Full Text] [Related]
20. [Tempo-spatial Variations and Influential Factors of Carbon Dioxide Emissions from the Geheyan Reservoir over the Qingjiang River Basin, China]. Zhao DZ; Tan DB; Li C; Shen SH Huan Jing Ke Xue; 2017 Mar; 38(3):954-963. PubMed ID: 29965565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]