BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 30236139)

  • 1. Integration of multiple types of genetic markers for neuroblastoma may contribute to improved prediction of the overall survival.
    Polewko-Klim A; Lesiński W; Mnich K; Piliszek R; Rudnicki WR
    Biol Direct; 2018 Sep; 13(1):17. PubMed ID: 30236139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of information theoretic feature selection and machine learning methods for the development of genetic risk prediction models.
    Jalali-Najafabadi F; Stadler M; Dand N; Jadon D; Soomro M; Ho P; Marzo-Ortega H; Helliwell P; Korendowych E; Simpson MA; Packham J; Smith CH; Barker JN; McHugh N; Warren RB; Barton A; Bowes J; ;
    Sci Rep; 2021 Dec; 11(1):23335. PubMed ID: 34857774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel framework for horizontal and vertical data integration in cancer studies with application to survival time prediction models.
    Mihaylov I; Kańduła M; Krachunov M; Vassilev D
    Biol Direct; 2019 Nov; 14(1):22. PubMed ID: 31752974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cancer survival classification using integrated data sets and intermediate information.
    Kim S; Park T; Kon M
    Artif Intell Med; 2014 Sep; 62(1):23-31. PubMed ID: 24997860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature selection and nearest centroid classification for protein mass spectrometry.
    Levner I
    BMC Bioinformatics; 2005 Mar; 6():68. PubMed ID: 15788095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies.
    Kim SY; Jeong HH; Kim J; Moon JH; Sohn KA
    Biol Direct; 2019 Apr; 14(1):8. PubMed ID: 31036036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Attribute Driven Incremental Discretization and Logic Learning Machine to build a prognostic classifier for neuroblastoma patients.
    Cangelosi D; Muselli M; Parodi S; Blengio F; Becherini P; Versteeg R; Conte M; Varesio L
    BMC Bioinformatics; 2014; 15 Suppl 5(Suppl 5):S4. PubMed ID: 25078098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning models to predict the progression from early to late stages of papillary renal cell carcinoma.
    Singh NP; Bapi RS; Vinod PK
    Comput Biol Med; 2018 Sep; 100():92-99. PubMed ID: 29990647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative analysis with machine learning identifies diagnostic and prognostic signatures in neuroblastoma based on differentially DNA methylated enhancers between INSS stage 4 and 4S neuroblastoma.
    Li S; Mi T; Jin L; Liu Y; Zhang Z; Wang J; Wu X; Ren C; Wang Z; Kong X; Liu J; Luo J; He D
    J Cancer Res Clin Oncol; 2024 Mar; 150(3):148. PubMed ID: 38512513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate outcome prediction in neuroblastoma across independent data sets using a multigene signature.
    De Preter K; Vermeulen J; Brors B; Delattre O; Eggert A; Fischer M; Janoueix-Lerosey I; Lavarino C; Maris JM; Mora J; Nakagawara A; Oberthuer A; Ohira M; Schleiermacher G; Schramm A; Schulte JH; Wang Q; Westermann F; Speleman F; Vandesompele J
    Clin Cancer Res; 2010 Mar; 16(5):1532-41. PubMed ID: 20179214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A blocking strategy to improve gene selection for classification of gene expression data.
    Bontempi G
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(2):293-300. PubMed ID: 17473321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.
    Chen Z; Li J; Wei L
    Artif Intell Med; 2007 Oct; 41(2):161-75. PubMed ID: 17851055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The feature selection bias problem in relation to high-dimensional gene data.
    Krawczuk J; Łukaszuk T
    Artif Intell Med; 2016 Jan; 66():63-71. PubMed ID: 26674595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ensemble heterogeneous classification methodology for discovering health-related knowledge in social media messages.
    Tuarob S; Tucker CS; Salathe M; Ram N
    J Biomed Inform; 2014 Jun; 49():255-68. PubMed ID: 24642081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-omics integration for neuroblastoma clinical endpoint prediction.
    Francescatto M; Chierici M; Rezvan Dezfooli S; Zandonà A; Jurman G; Furlanello C
    Biol Direct; 2018 Apr; 13(1):5. PubMed ID: 29615097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation.
    Kocak B; Yardimci AH; Bektas CT; Turkcanoglu MH; Erdim C; Yucetas U; Koca SB; Kilickesmez O
    Eur J Radiol; 2018 Oct; 107():149-157. PubMed ID: 30292260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FSR: feature set reduction for scalable and accurate multi-class cancer subtype classification based on copy number.
    Wong G; Leckie C; Kowalczyk A
    Bioinformatics; 2012 Jan; 28(2):151-9. PubMed ID: 22110244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.