BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

797 related articles for article (PubMed ID: 30236162)

  • 1. The marsupial trypanosome Trypanosoma copemani is not an obligate intracellular parasite, although it adversely affects cell health.
    Cooper C; Andrew Thompson RC; Rigby P; Buckley A; Peacock C; Clode PL
    Parasit Vectors; 2018 Sep; 11(1):521. PubMed ID: 30236162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a Better Understanding of the Life Cycle of Trypanosoma copemani.
    Botero A; Clode PL; Peacock C; Thompson RC
    Protist; 2016 Feb; 167(1):82-92. PubMed ID: 26712388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The innate resistance of Trypanosoma copemani to human serum.
    Austen JM; Ryan U; Ditcham WG; Friend JA; Reid SA
    Exp Parasitol; 2015 Jun; 153():105-10. PubMed ID: 25816975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro drug susceptibility of two strains of the wildlife trypanosome, Trypanosoma copemani: A comparison with Trypanosoma cruzi.
    Botero A; Keatley S; Peacock C; Thompson RC
    Int J Parasitol Drugs Drug Resist; 2017 Apr; 7(1):34-41. PubMed ID: 28040568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes.
    Shah-Simpson S; Lentini G; Dumoulin PC; Burleigh BA
    PLoS Pathog; 2017 Nov; 13(11):e1006747. PubMed ID: 29176805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the morphological diversity of the potentially zoonotic Trypanosoma copemani in quokkas and Gilbert's potoroos.
    Austen JM; Reid SA; Robinson DR; Friend JA; Ditcham WG; Irwin PJ; Ryan U
    Parasitology; 2015 Sep; 142(11):1443-52. PubMed ID: 26160545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A century of research: what have we learned about the interaction of Trypanosoma cruzi with host cells?
    Alves MJ; Mortara RA
    Mem Inst Oswaldo Cruz; 2009 Jul; 104 Suppl 1():76-88. PubMed ID: 19753462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parasite-Mediated Remodeling of the Host Microfilament Cytoskeleton Enables Rapid Egress of Trypanosoma cruzi following Membrane Rupture.
    Ferreira ER; Bonfim-Melo A; Burleigh BA; Costales JA; Tyler KM; Mortara RA
    mBio; 2021 Jun; 12(3):e0098821. PubMed ID: 34154418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of native Australian trypanosomes in quokka (Setonix brachyurus) populations from Western Australia.
    Austen JM; Paparini A; Reid SA; Friend JA; Ditcham WG; Ryan U
    Parasitol Int; 2016 Jun; 65(3):205-8. PubMed ID: 26697991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi.
    Alves MJ; Kawahara R; Viner R; Colli W; Mattos EC; Thaysen-Andersen M; Larsen MR; Palmisano G
    J Proteomics; 2017 Jan; 151():182-192. PubMed ID: 27318177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host cell invasion and oral infection by Trypanosoma cruzi strains of genetic groups TcI and TcIV from chagasic patients.
    Maeda FY; Clemente TM; Macedo S; Cortez C; Yoshida N
    Parasit Vectors; 2016 Apr; 9():189. PubMed ID: 27038796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinetoplast DNA of the Australian trypanosome, Trypanosoma copemani, shares features with Trypanosoma cruzi and Trypanosoma lewisi.
    Botero A; Kapeller I; Cooper C; Clode PL; Shlomai J; Thompson RCA
    Int J Parasitol; 2018 Aug; 48(9-10):691-700. PubMed ID: 29778329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiating Trypanosoma cruzi in a Host Mammalian Cell Imaged in Aqueous Liquid by Atmospheric Scanning Electron Microscopy.
    Takagi Y; Sato M; Naya M; Sato C
    Microbiol Spectr; 2022 Feb; 10(1):e0141321. PubMed ID: 34985339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host-Parasite Relationships and Life Histories of Trypanosomes in Australia.
    Cooper C; Clode PL; Peacock C; Thompson RC
    Adv Parasitol; 2017; 97():47-109. PubMed ID: 28325373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions Between Trypanosoma cruzi the Chagas Disease Parasite and Naturally Infected Wild Mepraia Vectors of Chile.
    Campos-Soto R; Ortiz S; Cordova I; Bruneau N; Botto-Mahan C; Solari A
    Vector Borne Zoonotic Dis; 2016 Mar; 16(3):165-71. PubMed ID: 26771702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invasion of MDCK epithelial cells with altered expression of Rho GTPases by Trypanosoma cruzi amastigotes and metacyclic trypomastigotes of strains from the two major phylogenetic lineages.
    Fernandes AB; Mortara RA
    Microbes Infect; 2004 Apr; 6(5):460-7. PubMed ID: 15109960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amastigotes of Trypanosoma cruzi sustain an infective cycle in mammalian cells.
    Ley V; Andrews NW; Robbins ES; Nussenzweig V
    J Exp Med; 1988 Aug; 168(2):649-59. PubMed ID: 3045248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagy: A necessary process during the
    Salassa BN; Romano PS
    Virulence; 2019 Dec; 10(1):460-469. PubMed ID: 30489206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of host cell invasion by Trypanosoma cruzi.
    Caradonna KL; Burleigh BA
    Adv Parasitol; 2011; 76():33-61. PubMed ID: 21884886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trypanosoma cruzi infection by oral route: how the interplay between parasite and host components modulates infectivity.
    Yoshida N
    Parasitol Int; 2008 Jun; 57(2):105-9. PubMed ID: 18234547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.